Intermediate Models of Prikry Type Forcings

Tom Benhamou

Department of Mathematics Tel Aviv University

December 14, 2020

3

・ロト ・聞ト ・ヨト ・ヨト

A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G].

A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G]. Any intermediate model M of a forcing extension by B is of the form M = V[H], where H is V-generic for some complete subalgebra of B.

A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G]. Any intermediate model M of a forcing extension by B is of the form M = V[H], where H is V-generic for some complete subalgebra of B.

For the Cohen and Random forcings we have the following classification:

A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G]. Any intermediate model M of a forcing extension by B is of the form M = V[H], where H is V-generic for some complete subalgebra of B.

For the Cohen and Random forcings we have the following classification:

Theorem

A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G]. Any intermediate model M of a forcing extension by B is of the form M = V[H], where H is V-generic for some complete subalgebra of B.

For the Cohen and Random forcings we have the following classification:

Theorem

 (Folklore [7]) Any intermediate model of a Cohen generic extension is a Cohen generic extension. A general basic problem is to classify the complete subalgebras of a given complete boolean algebra B. Alternatively, one can study the intermediate models of a V-generic extensions V[G] of B i.e. transitive ZFC models $V \subsetneq M \subseteq V[G]$ definable in V[G]. Any intermediate model M of a forcing extension by B is of the form M = V[H], where H is V-generic for some complete subalgebra of B.

For the Cohen and Random forcings we have the following classification:

Theorem

- (Folklore [7]) Any intermediate model of a Cohen generic extension is a Cohen generic extension.
- (D.Maharam) Any intermediate model of a Random real generic extension is a Random real generic extension.

3

・ロト ・聞ト ・ヨト ・ヨト

- ∢ ⊢⊒ →

3

Problem

э

Problem

What are the complete subforcings of Random \times Random?

Problem

What are the complete subforcings of Random \times Random?

Clearly, the Random forcing is an example, and by Steinhouse, Random \times Random adds a Cohen real. But is that all?

Problem

What are the complete subforcings of Random \times Random?

Clearly, the Random forcing is an example, and by Steinhouse, Random \times Random adds a Cohen real. But is that all? The same phenomena of the structure of intermediate models also hold for the standard Prikry forcing:

Problem

What are the complete subforcings of Random \times Random?

Clearly, the Random forcing is an example, and by Steinhouse, Random \times Random adds a Cohen real. But is that all? The same phenomena of the structure of intermediate models also hold for the standard Prikry forcing:

Theorem (Gitik, Kanovei, Koepke, 2010 [6])

Problem

What are the complete subforcings of Random \times Random?

Clearly, the Random forcing is an example, and by Steinhouse, Random \times Random adds a Cohen real. But is that all? The same phenomena of the structure of intermediate models also hold for the standard Prikry forcing:

Theorem (Gitik, Kanovei, Koepke, 2010 [6])

Let U be a normal measure over κ and $G \subseteq \mathbb{P}(U)$ be a V-generic set producing the Prikry sequence $C_G := \{C_G(n) \mid n < \omega\}$. Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

2

・ロト ・聞ト ・ヨト ・ヨト

< 🗗 🕨

э

In the settings of the last theorem, let $V \subsetneq M \subseteq V[G]$ be an intermediate model, then M = V[G'] where $G' \subseteq \mathbb{P}(U)$ is another V-generic filter.

In the settings of the last theorem, let $V \subsetneq M \subseteq V[G]$ be an intermediate model, then M = V[G'] where $G' \subseteq \mathbb{P}(U)$ is another V-generic filter.

Proof.

In the settings of the last theorem, let $V \subsetneq M \subseteq V[G]$ be an intermediate model, then M = V[G'] where $G' \subseteq \mathbb{P}(U)$ is another V-generic filter.

Proof.

Every such model is of the form M = V[A] for some set $A \in V[G]$. By the theorem, M = V[C] for some subsequence C of the Prikry sequence. By the Mathias criteria[10], C is itself a Prikry sequence for U.

In the settings of the last theorem, let $V \subsetneq M \subseteq V[G]$ be an intermediate model, then M = V[G'] where $G' \subseteq \mathbb{P}(U)$ is another V-generic filter.

Proof.

Every such model is of the form M = V[A] for some set $A \in V[G]$. By the theorem, M = V[C] for some subsequence C of the Prikry sequence. By the Mathias criteria[10], C is itself a Prikry sequence for U.

In this talk we will examine the intermediate models of **the tree Prikry** and the **Magidor-Radin** forcings.

2

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Definition (Tree Prikry Focring- $P_T(\vec{U})$)

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Definition (Tree Prikry Focring- $P_T(\vec{U})$)

Conditions of $P_T(\vec{U})$ are pairs $\langle t, T \rangle$, where T is a subtree of $[S]^{<\omega}$ with stem t, which is \vec{U} -splitting:

$$\forall s \in T.s \ge t \to \operatorname{Succ}_{T}(s) := \{x \in S \mid s^{\frown}x \in T\} \in U_{s}$$

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Definition (Tree Prikry Focring- $P_T(\vec{U})$)

Conditions of $P_T(\vec{U})$ are pairs $\langle t, T \rangle$, where T is a subtree of $[S]^{<\omega}$ with stem t, which is \vec{U} -splitting:

$$\forall s \in T.s \ge t \to \operatorname{Succ}_T(s) := \{x \in S \mid s^{\widehat{}}x \in T\} \in U_s$$

The order is defined (Israel convention: $q \le p$ then $p \Vdash q \in G$) $\langle t, T \rangle \le \langle s, S \rangle$ iff $S \subseteq T$ (hence $s \in T$)

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Definition (Tree Prikry Focring- $P_T(\vec{U})$)

Conditions of $P_T(\vec{U})$ are pairs $\langle t, T \rangle$, where T is a subtree of $[S]^{<\omega}$ with stem t, which is \vec{U} -splitting:

$$\forall s \in T.s \ge t \to \operatorname{Succ}_T(s) := \{x \in S \mid s^{\frown}x \in T\} \in U_s$$

The order is defined (Israel convention: $q \le p$ then $p \Vdash q \in G$) $\langle t, T \rangle \le \langle s, S \rangle$ iff $S \subseteq T$ (hence $s \in T$)

We will mostly be interested in ultrafilters over κ itself.

Let $\langle S, \leq_S \rangle$ be any poset, denote by $[S]^{<\omega}$ the tree of finite \leq_S -increasing sequences ordered by end-extension. Let $\vec{U} = \langle U_a \mid a \in [S]^{<\omega} \rangle$ be a tree of |S|-complete uniform ultrafilters over S.

Definition (Tree Prikry Focring- $P_T(\vec{U})$)

Conditions of $P_T(\vec{U})$ are pairs $\langle t, T \rangle$, where T is a subtree of $[S]^{<\omega}$ with stem t, which is \vec{U} -splitting:

$$\forall s \in T.s \ge t \to \operatorname{Succ}_T(s) := \{x \in S \mid s^{\uparrow}x \in T\} \in U_s$$

The order is defined (Israel convention: $q \le p$ then $p \Vdash q \in \dot{G}$) $\langle t, T \rangle \le \langle s, S \rangle$ iff $S \subseteq T$ (hence $s \in T$)

We will mostly be interested in ultrafilters over κ itself. It turns out (not surprisingly) that the structure of the intermediate models of the tree Prikry forcing depends on the combinatorical properties of the measures in \vec{U} .

Theorem (Koepke, Räsch, Schlicht (2013)[8])

Theorem (Koepke, Räsch, Schlicht (2013)[8])

Assume that $\vec{U} = \langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of distinct normal measures. Then for every V-generic filter $G \subseteq P_T(\vec{U})^a$, there is no proper intermediate model $V \subsetneq M \subsetneq V[G]$.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = U_{\max(a)}$.

Theorem (Koepke, Räsch, Schlicht (2013)[8])

Assume that $\vec{U} = \langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of distinct normal measures. Then for every V-generic filter $G \subseteq P_T(\vec{U})^a$, there is no proper intermediate model $V \subsetneq M \subsetneq V[G]$.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = U_{\max(a)}$.

On the other hand:

Theorem (Gitik, B. (2021)[3])

Theorem (Koepke, Räsch, Schlicht (2013)[8])

Assume that $\vec{U} = \langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of distinct normal measures. Then for every V-generic filter $G \subseteq P_T(\vec{U})^a$, there is no proper intermediate model $V \subsetneq M \subsetneq V[G]$.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = U_{\max(a)}$.

On the other hand:

Theorem (Gitik, B. (2021)[3])

Assume GCH and let κ be a measurable cardinal. There is a cofinality preserving forcing extension $V \subseteq N$ and an ultrafilter $W \in N$ such that forcing with $P_T(W)^a$ over N adds a κ -Cohen real.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = W$.

イロト 不得下 イヨト イヨト

Theorem (Koepke, Räsch, Schlicht (2013)[8])

Assume that $\vec{U} = \langle U_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of distinct normal measures. Then for every V-generic filter $G \subseteq P_T(\vec{U})^a$, there is no proper intermediate model $V \subsetneq M \subsetneq V[G]$.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = U_{\max(a)}$.

On the other hand:

Theorem (Gitik, B. (2021)[3])

Assume GCH and let κ be a measurable cardinal. There is a cofinality preserving forcing extension $V \subseteq N$ and an ultrafilter $W \in N$ such that forcing with $P_T(W)^a$ over N adds a κ -Cohen real.

^aWe view \vec{U} as a tree by defining for every $a \in [\kappa]^{<\omega}$, $U_a = W$.

Let us sketch the main ideas of the proof:

Prikry introduce Cohen- Proof

Proof.

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, \mathcal{Q}_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$:

< 67 ▶

э

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing $\{0\}$ and the β -Cohen real forcing $Add(\beta, 1)$.

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing $\{0\}$ and the β -Cohen real forcing $Add(\beta, 1)$. Let $G_{\kappa} \subseteq P_{\kappa}$ be V-generic and $N := V[G_{\kappa}]$. Let $U \in V$ be a normal measure over κ and $j_1 := j_U : V \to M_U$ be the corresponding elementary embedding, denote $j_1(\kappa) = \kappa_1$.

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing $\{0\}$ and the β -Cohen real forcing $Add(\beta, 1)$. Let $G_{\kappa} \subseteq P_{\kappa}$ be V-generic and $N := V[G_{\kappa}]$. Let $U \in V$ be a normal measure over κ and $j_1 := j_U : V \to M_U$ be the corresponding elementary embedding, denote $j_1(\kappa) = \kappa_1$. Let us extend j_U to $j_1^* : V[G_{\kappa}] \to M_U[H]$, note that $j_1(P_{\kappa}) = P_{\kappa_1}$ is an iteration defined similar to P_{κ} inside M_U , so we only need to find a generic for the part $P_{[\kappa,\kappa_1)}$.

イロト イ押ト イヨト イヨト

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing {0} and the β -Cohen real forcing $Add(\beta, 1)$. Let $G_{\kappa} \subseteq P_{\kappa}$ be V-generic and $N := V[G_{\kappa}]$. Let $U \in V$ be a normal measure over κ and $j_1 := j_{U} : V \to M_U$ be the corresponding elementary embedding, denote $j_1(\kappa) = \kappa_1$. Let us extend j_U to $j_1^* : V[G_{\kappa}] \to M_U[H]$, note that $j_1(P_{\kappa}) = P_{\kappa_1}$ is an iteration defined similar to P_{κ} inside M_U , so we only need to find a generic for the part $P_{[\kappa,\kappa_1]}$. Since κ is inaccessible in M_U , the forcing Q_{κ} is a lottery sum, which is not κ^+ -closed. By choosing $\{0\}$, we gain sufficient closure to construct a M_U -generic $G_{\kappa_1} \in V[G_{\kappa}]$.

イロト 不得下 イヨト イヨト

The model N is obtained by forcing the Easton support iteration $\langle P_{\alpha}, Q_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$: Each Q_{β} is trivial, unless β is inaccessible. For inaccessible β , Q_{β} is the lottery sum of the trivial forcing {0} and the β -Cohen real forcing $Add(\beta, 1)$. Let $G_{\kappa} \subseteq P_{\kappa}$ be V-generic and $N := V[G_{\kappa}]$. Let $U \in V$ be a normal measure over κ and $j_1 := j_{U} : V \to M_U$ be the corresponding elementary embedding, denote $j_1(\kappa) = \kappa_1$. Let us extend j_U to $j_1^* : V[G_{\kappa}] \to M_U[H]$, note that $j_1(P_{\kappa}) = P_{\kappa_1}$ is an iteration defined similar to P_{κ} inside M_U , so we only need to find a generic for the part $P_{[\kappa,\kappa_1]}$. Since κ is inaccessible in M_U , the forcing Q_{κ} is a lottery sum, which is not κ^+ -closed. By choosing $\{0\}$, we gain sufficient closure to construct a M_U -generic $G_{\kappa_1} \in V[G_{\kappa}]$. Note that, the ultrafilter $\{X \in P^N(\kappa) \mid \kappa \in j_1^*(X)\}$ concentrates on $\{\alpha < \kappa \mid \{0\} \text{ was forced at } \alpha\}.$

3

(日) (周) (三) (三)

Back in V, consider the second iteration by U, $j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$.

Back in V, consider the second iteration by U, $j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2]}$ is κ^+ closed.

Back in V, consider the second iteration by U, $j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} .

Back in V, consider the second iteration by U, $j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} . Let

$$W = \{X \in P^N(\kappa) \mid \kappa_1 \in j_2^*(X)\}$$

Clearly W concentrates on the set Y of point on which the Cohen part was forced in G_{κ} .

Back in V, consider the second iteration by $U, j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} . Let

$$W = \{X \in P^N(\kappa) \mid \kappa_1 \in j_2^*(X)\}$$

Clearly W concentrates on the set Y of point on which the Cohen part was forced in G_{κ} . For each $\alpha \in Y$, let f_{α} be the Cohen function added by G_{κ} .

Back in V, consider the second iteration by $U, j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} . Let

$$W = \{X \in P^N(\kappa) \mid \kappa_1 \in j_2^*(X)\}$$

Clearly W concentrates on the set Y of point on which the Cohen part was forced in G_{κ} . For each $\alpha \in Y$, let f_{α} be the Cohen function added by G_{κ} . Force $P_T(W)$ over N, and denote by $C_G := \{\kappa_n \mid n < \omega\}$ the Prikry sequence.

Back in V, consider the second iteration by $U, j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} . Let

$$W = \{X \in P^N(\kappa) \mid \kappa_1 \in j_2^*(X)\}$$

Clearly W concentrates on the set Y of point on which the Cohen part was forced in G_{κ} . For each $\alpha \in Y$, let f_{α} be the Cohen function added by G_{κ} . Force $P_T(W)$ over N, and denote by $C_G := \{\kappa_n \mid n < \omega\}$ the Prikry sequence. There is $n_0 < \omega$ such that for every $n \ge n_0$, $\kappa_n \in Y$ and therefore f_{κ_n} is defined.

Back in V, consider the second iteration by $U, j_{j_1(U)} : M_U \to M_{j_1(U)}$, and denote by $j_2 = j_{j_1(U)} \circ j_1$, $\kappa_2 = j_2(\kappa)$. Note that from the point of view of V, the forcing $P_{[\kappa_1,\kappa_2)}$ is κ^+ closed. Hence a generic filter can be constructed to extend j_2 to j_2^* , only this time we can choose the Cohen part in the lottery of Q_{κ_1} . Let

$$W = \{X \in P^N(\kappa) \mid \kappa_1 \in j_2^*(X)\}$$

Clearly W concentrates on the set Y of point on which the Cohen part was forced in G_{κ} . For each $\alpha \in Y$, let f_{α} be the Cohen function added by G_{κ} . Force $P_T(W)$ over N, and denote by $C_G := \{\kappa_n \mid n < \omega\}$ the Prikry sequence. There is $n_0 < \omega$ such that for every $n \ge n_0$, $\kappa_n \in Y$ and therefore f_{κ_n} is defined. It remains to see that

$$f = \bigcup_{n_0 \leq n < \omega} f_{\kappa_n} \upharpoonright [\kappa_{n-1}, \kappa_n) \in N[C_G]$$

is *N*-generic for $Add(\kappa, 1)$.

the class of projection of $P_T(U)$

Image: Image:

3

the class of projection of $P_T(U)$

Question

э

the class of projection of $P_T(U)$

Question

What is the class of forcing extensions which can be intermediate to a tree *Prikry* generic extension?

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$.

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$. A natural subclass to consider is the class of κ -distributive forcing of cardinality κ .

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$. A natural subclass to consider is the class of κ -distributive forcing of cardinality κ .

Theorem

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$. A natural subclass to consider is the class of κ -distributive forcing of cardinality κ .

Theorem

Let \mathbb{P} be a σ -distributive forcing of size κ . The following are equivalent:

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$. A natural subclass to consider is the class of κ -distributive forcing of cardinality κ .

Theorem

Let \mathbb{P} be a σ -distributive forcing of size κ . The following are equivalent:

• There is a projection $\pi : \mathbb{P}_T(\vec{\mathcal{U}}) \to \mathbb{P}$, where $\vec{\mathcal{U}} = \langle U_\eta \mid \eta \in [S]^{<\omega} \rangle$ is a sequence of ultrafilters on S and $|S| = \kappa$.

< 67 ▶

What is the class of forcing extensions which can be intermediate to a tree *Prikry generic extension?*

Obviously, such a class cannot add bounded subsets to κ as $P_T(U)$ does not add bounded subsets of κ . Also there are forcing of cardinality κ^+ which cannot be projections of $P_T(\vec{U})$, for example $Add(\kappa^+, 1)$. A natural subclass to consider is the class of κ -distributive forcing of cardinality κ .

Theorem

Let \mathbb{P} be a σ -distributive forcing of size κ . The following are equivalent:

• There is a projection $\pi : \mathbb{P}_T(\vec{\mathcal{U}}) \to \mathbb{P}$, where $\vec{\mathcal{U}} = \langle U_\eta \mid \eta \in [S]^{<\omega} \rangle$ is a sequence of ultrafilters on S and $|S| = \kappa$.

② For every p ∈ P there is a κ-complete ultrafilter U_p ⊇ D_p(P). Where D_p(P) is the filter of dense open subsets of P above p.

イロト イ理ト イヨト イヨ

- ∢ ⊢⊒ →

æ

Definition (κ -compact Cardinal)

Definition (κ -compact Cardinal)

 κ is called a κ -compact cardinal if every κ -complete filter over κ can be extended to a κ -complete ultrafilter over κ

Definition (κ -compact Cardinal)

 κ is called a $\kappa\text{-compact}$ cardinal if every $\kappa\text{-complete}$ filter over κ can be extended to a $\kappa\text{-complete}$ ultrafilter over κ

Corollary

Definition (κ -compact Cardinal)

 κ is called a κ -compact cardinal if every κ -complete filter over κ can be extended to a κ -complete ultrafilter over κ

Corollary

Assume that κ is κ -compact then every κ distributive forcing of cardinality κ is a projection of the tree-Prikry forcing.

Definition (κ -compact Cardinal)

 κ is called a κ -compact cardinal if every κ -complete filter over κ can be extended to a κ -complete ultrafilter over κ

Corollary

Assume that κ is κ -compact then every κ distributive forcing of cardinality κ is a projection of the tree-Prikry forcing.

The assumption that κ is κ -compact is quit strong:

Definition (κ -compact Cardinal)

 κ is called a κ -compact cardinal if every κ -complete filter over κ can be extended to a κ -complete ultrafilter over κ

Corollary

Assume that κ is κ -compact then every κ distributive forcing of cardinality κ is a projection of the tree-Prikry forcing.

The assumption that κ is κ -compact is quit strong:

Theorem (Gitik [5])

Definition (κ -compact Cardinal)

 κ is called a $\kappa\text{-compact}$ cardinal if every $\kappa\text{-complete}$ filter over κ can be extended to a $\kappa\text{-complete}$ ultrafilter over κ

Corollary

Assume that κ is κ -compact then every κ distributive forcing of cardinality κ is a projection of the tree-Prikry forcing.

The assumption that κ is κ -compact is quit strong:

Theorem (Gitik [5])

If κ is κ -compact then there is an inner model with a Woodin cardinal.

Lower bound for all the κ -distributive

Question

Can the assumption that κ is κ -compact be relaxed?

Can the assumption that κ is κ -compact be relaxed?

In a recent joint work with Gitik and Hayut, we have found that there is a non trivial lower bound:

Theorem (Gitik, Hayut, B.)

Can the assumption that κ is κ -compact be relaxed?

In a recent joint work with Gitik and Hayut, we have found that there is a non trivial lower bound:

Theorem (Gitik, Hayut, B.)

Let Q be the forcing shooting a club through the singulars below κ^a . Assume that there is a κ -complete ultrafilter extending the filter D(Q) of dense open subset of Q. Then either there is an inner model for $\exists \lambda, o(\lambda) = \lambda^{++}$, or $o^{\mathcal{K}}(\kappa) \geq \kappa + \kappa$.

^aThus Making κ not Mahlo. It is $< \kappa$ -strategically closed.

Question

Can the assumption that κ is κ -compact be relaxed?

In a recent joint work with Gitik and Hayut, we have found that there is a non trivial lower bound:

Theorem (Gitik, Hayut, B.)

Let Q be the forcing shooting a club through the singulars below κ^a . Assume that there is a κ -complete ultrafilter extending the filter D(Q) of dense open subset of Q. Then either there is an inner model for $\exists \lambda, o(\lambda) = \lambda^{++}$, or $o^{\mathcal{K}}(\kappa) \geq \kappa + \kappa$.

^aThus Making κ not Mahlo. It is $< \kappa$ -strategically closed.

Another direction taken in our work is the following:

Question

Another direction taken in our work is the following:

Question

Under the minimal assumption that κ is measurable. What is the class of forcing \mathcal{P} which can be intermediate to a tree Prikry extension?

Another direction taken in our work is the following:

Question

Under the minimal assumption that κ is measurable. What is the class of forcing \mathcal{P} which can be intermediate to a tree Prikry extension?

We have constructed a Class of forcing called **Masterable forcing** (Denoted by \mathcal{N}_{κ}) which is obtained by isolating the properties of a forcing which are sufficient for the argument given for Cohen forcing to work.

Another direction taken in our work is the following:

Question

Under the minimal assumption that κ is measurable. What is the class of forcing \mathcal{P} which can be intermediate to a tree Prikry extension?

We have constructed a Class of forcing called **Masterable forcing** (Denoted by \mathcal{N}_{κ}) which is obtained by isolating the properties of a forcing which are sufficient for the argument given for Cohen forcing to work. \mathcal{N}_{κ} is closed under complete subforcings, and proven to consistently include many forcing notions \mathcal{N}_{κ} .

Another direction taken in our work is the following:

Question

Under the minimal assumption that κ is measurable. What is the class of forcing \mathcal{P} which can be intermediate to a tree Prikry extension?

We have constructed a Class of forcing called **Masterable forcing** (Denoted by \mathcal{N}_{κ}) which is obtained by isolating the properties of a forcing which are sufficient for the argument given for Cohen forcing to work. \mathcal{N}_{κ} is closed under complete subforcings, and proven to consistently include many forcing notions \mathcal{N}_{κ} .

Theorem

Another direction taken in our work is the following:

Question

Under the minimal assumption that κ is measurable. What is the class of forcing \mathcal{P} which can be intermediate to a tree Prikry extension?

We have constructed a Class of forcing called **Masterable forcing** (Denoted by \mathcal{N}_{κ}) which is obtained by isolating the properties of a forcing which are sufficient for the argument given for Cohen forcing to work. \mathcal{N}_{κ} is closed under complete subforcings, and proven to consistently include many forcing notions \mathcal{N}_{κ} .

Theorem

Assume GCH and let κ be a measurable cardinal.

Then there is a cofinality preserving forcing extension in which for any $\mathbb{Q} \in \mathcal{N}_{\kappa}$, there is a κ -complete ultrafilter \mathcal{U} extending $\mathcal{D}_{p}(\mathbb{Q})$ for every $p \in \mathbb{Q}$.

Image: A matrix and a matrix

æ

We follow the description from [4]:

< A

We follow the description from [4]:

Definition $(\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

< A

We follow the description from [4]:

Definition $(\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

We follow the description from [4]:

Definition $(\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

• $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .

We follow the description from [4]:

Definition ($\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- A_i = ∅ unless $o^{\vec{U}}(\alpha_i) > 0$ in which case, $A_i \in \bigcap_{\beta < o^{\vec{U}}(\alpha_i)} U(\alpha_i, \beta)$ is a measure one set with respect to all the measures given on α_i .

We follow the description from [4]:

Definition ($\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- A_i = Ø unless o^U(α_i) > 0 in which case, A_i ∈ ∩_{β<o^U(α_i)}U(α_i, β) is a measure one set with respect to all the measures given on α_i. The order is define as follows,

 $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle \leq \langle \langle \beta_1, B_1 \rangle, ..., \langle \beta_m, B_m \rangle, \langle \kappa, B \rangle \rangle$ iff:

< 4 ► >

We follow the description from [4]:

Definition ($\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- A_i = Ø unless o^Ū(α_i) > 0 in which case, A_i ∈ ∩_{β<o^Ū(α_i)}U(α_i, β) is a measure one set with respect to all the measures given on α_i. The order is define as follows, ⟨⟨α₁, A₁⟩, ..., ⟨α_n, A_n⟩, ⟨κ, A⟩⟩ < ⟨⟨β₁, B₁⟩, ..., ⟨β_m, B_m⟩, ⟨κ, B⟩⟩ iff:

 $\exists 1 \leq i_1 < ... < i_n \leq m$ such that for every $1 \leq j \leq m$:

A D > A A P >

We follow the description from [4]:

Definition ($\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- A_i = Ø unless o^Ū(α_i) > 0 in which case, A_i ∈ ∩_{β<o^Ū(α_i)}U(α_i, β) is a measure one set with respect to all the measures given on α_i. The order is define as follows, ⟨⟨α₁, A₁⟩, ..., ⟨α_n, A_n⟩, ⟨κ, A⟩⟩ ≤ ⟨⟨β₁, B₁⟩, ..., ⟨β_m, B_m⟩, ⟨κ, B⟩⟩ iff: ∃1 ≤ i₁ < ... < i_n ≤ m such that for every 1 ≤ j ≤ m:
 - If $\exists 1 \leq r \leq n$ such that $i_r = j$ then $\beta_{i_r} = \alpha_r$ and $B_{i_r} \subseteq A_r$.

We follow the description from [4]:

Definition ($\mathbb{M}[\vec{U}]$ -Magidor Forcing [9])

Let $\vec{U} = \langle U(\alpha, \beta) | \alpha \leq \kappa, \beta < o^{\vec{U}}(\alpha) \rangle$ be a coherent sequence. The conditions of $\mathbb{M}[\vec{U}]$ are of the form $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle$ where:

- $\alpha_1 < ... < \alpha_n$ is an increasing sequence below κ .
- **2** $A_i = \emptyset$ unless $o^{\vec{U}}(\alpha_i) > 0$ in which case, $A_i \in \bigcap_{\beta < o^{\vec{U}}(\alpha_i)} U(\alpha_i, \beta)$ is a measure one set with respect to **all** the measures given on α_i . The order is define as follows,
 - $\langle \langle \alpha_1, A_1 \rangle, ..., \langle \alpha_n, A_n \rangle, \langle \kappa, A \rangle \rangle \leq \langle \langle \beta_1, B_1 \rangle, ..., \langle \beta_m, B_m \rangle, \langle \kappa, B \rangle \rangle$ iff:
 - $\exists 1 \leq i_1 < ... < i_n \leq m$ such that for every $1 \leq j \leq m$:
 - If $\exists 1 \leq r \leq n$ such that $i_r = j$ then $\beta_{i_r} = \alpha_r$ and $B_{i_r} \subseteq A_r$.
 - **2** Otherwise let $1 \le r \le n+1$ such that $i_{r-1} < j < i_r$ then:
 - $\beta_j \in A_r, \ B_j \subseteq A_r \cap \alpha_r, \ o^{\vec{U}}(\beta_j) < o^{\vec{U}}(\alpha_r)$

Intermediate Models of a generic extension by $\mathbb{M}[\vec{U}]$ are not necessarily generic extensions of $\mathbb{M}[\vec{U}]$:

Intermediate Models of a generic extension by $\mathbb{M}[\vec{U}]$ are not necessarily generic extensions of $\mathbb{M}[\vec{U}]$:

Example

Intermediate Models of a generic extension by $\mathbb{M}[\vec{U}]$ are not necessarily generic extensions of $\mathbb{M}[\vec{U}]$:

Example

Assume that $o^{\vec{U}}(\kappa) = 2$. Then κ carries two measures: $U(\kappa, 0), U(\kappa, 1)$. This means that typically the generic club generated is of order type ω^2 , denote it by $C_G = \{C_G(i) \mid i < \omega^2\}$. If we take for example the intermediate model $V[\{C_G(n) \mid n < \omega\}]$, it is a Prikry $P(U(C_G(\omega), 0))$ generic extension (By the Mathias criteria), which is not a generic extension for $\mathbb{M}[\vec{U}]$.

Example

Intermediate Models of a generic extension by $\mathbb{M}[\vec{U}]$ are not necessarily generic extensions of $\mathbb{M}[\vec{U}]$:

Example

Assume that $o^{\vec{U}}(\kappa) = 2$. Then κ carries two measures: $U(\kappa, 0), U(\kappa, 1)$. This means that typically the generic club generated is of order type ω^2 , denote it by $C_G = \{C_G(i) \mid i < \omega^2\}$. If we take for example the intermediate model $V[\{C_G(n) \mid n < \omega\}]$, it is a Prikry $P(U(C_G(\omega), 0))$ generic extension (By the Mathias criteria), which is not a generic extension for $\mathbb{M}[\vec{U}]$.

Example

Assume that $\sigma^{\vec{U}}(\kappa) = \omega$, thus $\operatorname{otp}(C_G) = \omega^{\omega}$. Consider the intermediate extension $V[\{C_G(\omega^n) \mid n < \omega\}]$ it is a diagonal Prikry generic extension for the sequence of measures $\langle U(\kappa, n) \mid n < \omega \rangle$.

Intermediate models of Magidor Extensions

Intermediate models of Magidor Extensions

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) < \delta_0 := \min(\alpha \mid o^{\vec{U}}(\alpha) = 1)$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor club C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) < \delta_0 := \min(\alpha \mid o^{\vec{U}}(\alpha) = 1)$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor club C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

As we have seen in the examples, it is not clear which are the forcings such that the models V[C] are generic for. In our paper, we defined in the ground model a class of "Magidor-Type" forcing notions, denoted by $\mathbb{M}_{I}[\vec{U}]$, which is basically a Magidor forcing adding elements prescribed by the set I, where I is the set of indices of C inside C_{G} .

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) < \delta_0 := \min(\alpha \mid o^{\vec{U}}(\alpha) = 1)$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor club C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

As we have seen in the examples, it is not clear which are the forcings such that the models V[C] are generic for. In our paper, we defined in the ground model a class of "Magidor-Type" forcing notions, denoted by $\mathbb{M}_{I}[\vec{U}]$, which is basically a Magidor forcing adding elements prescribed by the set I, where I is the set of indices of C inside C_{G} .

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) < \delta_0 := \min(\alpha \mid o^{\vec{U}}(\alpha) = 1)$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor club C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

As we have seen in the examples, it is not clear which are the forcings such that the models V[C] are generic for. In our paper, we defined in the ground model a class of "Magidor-Type" forcing notions, denoted by $\mathbb{M}_{I}[\vec{U}]$, which is basically a Magidor forcing adding elements prescribed by the set I, where I is the set of indices of C inside C_{G} .

Theorem

In the settings of the last theorem, let $V \subseteq M \subseteq V[G]$ be an intermediate ZFC model definable V[G], M = V[G'] where $G' \subseteq \mathbb{M}_I[\vec{U}]$ is a generic filter for some $I \in V$.

The case $\delta_0 \leq o^{\vec{U}}(\kappa) \leq \kappa$

→

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

The case $\delta_0 \leq o^{\vec{U}}(\kappa) \leq \kappa$

Example

Benhamou, T.

< 67 ▶

The case $\delta_0 \leq o^{\vec{U}}(\kappa) \leq \kappa$

Example

Let $o^{\vec{U}}(\kappa) = \delta_0$. There is $G \subseteq \mathbb{M}[\vec{U}]$ which produces a Magidor sequence $\{C_G(\alpha) \mid \alpha < \delta_0\}$ such that $C_G(\omega) = \delta_0$. The first Prikry sequence $\{C_G(n) \mid n < \omega\} \in V[G]$ is a cofinal sequence in $C_G(\omega) = \delta_0$. Consider the sequence $C = \{C_G(C_G(n)) \mid n < \omega\}$. It is unbounded in κ and witnesses that κ changes cofinality to ω . This example does not fall under the classification of the last theorem since the indices of C inside C_G are $I := \{C_G(n) \mid n < \omega\} \notin V$.

The case $\delta_0 \leq o^{\vec{U}}(\kappa) \leq \kappa$

Example

Let $o^{\vec{U}}(\kappa) = \delta_0$. There is $G \subseteq \mathbb{M}[\vec{U}]$ which produces a Magidor sequence $\{C_G(\alpha) \mid \alpha < \delta_0\}$ such that $C_G(\omega) = \delta_0$. The first Prikry sequence $\{C_G(n) \mid n < \omega\} \in V[G]$ is a cofinal sequence in $C_G(\omega) = \delta_0$. Consider the sequence $C = \{C_G(C_G(n)) \mid n < \omega\}$. It is unbounded in κ and witnesses that κ changes cofinality to ω . This example does not fall under the classification of the last theorem since the indices of C inside C_G are $I := \{C_G(n) \mid n < \omega\} \notin V$.

Example

The case $\delta_0 \leq o^{\vec{U}}(\kappa) \leq \kappa^{\vec{U}}(\kappa)$

Example

Let $o^{\vec{U}}(\kappa) = \delta_0$. There is $G \subseteq \mathbb{M}[\vec{U}]$ which produces a Magidor sequence $\{C_G(\alpha) \mid \alpha < \delta_0\}$ such that $C_G(\omega) = \delta_0$. The first Prikry sequence $\{C_G(n) \mid n < \omega\} \in V[G]$ is a cofinal sequence in $C_G(\omega) = \delta_0$. Consider the sequence $C = \{C_G(C_G(n)) \mid n < \omega\}$. It is unbounded in κ and witnesses that κ changes cofinality to ω . This example does not fall under the classification of the last theorem since the indices of C inside C_G are $I := \{C_G(n) \mid n < \omega\} \notin V$.

Example

Assume that $o^{\vec{U}}(\kappa) = \kappa$, and let $C_G = \{C_G(\alpha) \mid \alpha < \kappa\}$, and let $\kappa^* \in C_G$ is such that for any $\beta \in C_G \setminus \kappa^*$, $o^{\vec{U}}(\beta) < \beta$. In V[G], define $\alpha_0 = \kappa^*$, and $\alpha_{n+1} = C_G(\alpha_n)$. Then $\{\alpha_n \mid n < \omega\}$ is a cofinal ω -sequence in κ . Also, it satisfy the Mathias criteria [1] for the tree Prikry forcing with respect to the measures on κ , $\langle U(\kappa, \alpha) \mid \alpha < \kappa \rangle$.

Be	nha	mοι	л, Т.

■ のへで

イロト イヨト イヨト イヨト

Lately we have proven the following result:

Lately we have proven the following result:

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let us sketch some of the ideas from the proof:

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let us sketch some of the ideas from the proof: The theorem is by induction on κ . Note that it suffices to prove the theorem for sets of ordinals.

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let us sketch some of the ideas from the proof: The theorem is by induction on κ . Note that it suffices to prove the theorem for sets of ordinals.

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let us sketch some of the ideas from the proof: The theorem is by induction on κ . Note that it suffices to prove the theorem for sets of ordinals.

Lemma

If $A \subseteq V$, $A \in V[G]$, $|A| < \kappa$, then there is $C \subseteq C_G$ such that V[A] = V[C].

Theorem (Gitik, B.)

Let κ be a cardinal such that $o^{\vec{U}}(\kappa) \leq \kappa$. Let $G \subseteq \mathbb{M}[\vec{U}]$ be a V-generic set producing the Magidor sequence C_G . Then for every $A \in V[G]$ there is $C \subseteq C_G$, such that V[A] = V[C].

Let us sketch some of the ideas from the proof: The theorem is by induction on κ . Note that it suffices to prove the theorem for sets of ordinals.

Lemma

If $A \subseteq V$, $A \in V[G]$, $|A| < \kappa$, then there is $C \subseteq C_G$ such that V[A] = V[C].

The proof of the lemma used the strong Prikry property.

- 一司

3

Definition

э

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{-\alpha} \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{\frown} \alpha \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Proposition (The strong Prikry Property)

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{\frown} \alpha \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Proposition (The strong Prikry Property)

Suppose that $p \in \mathbb{M}[\vec{U}]$ and $D \subseteq \mathbb{M}[\vec{U}]$ is a dense open subset. Then there is $p^* \geq^* p$ and a \vec{U} -fat tree T, such that for every maximal branch $\vec{b} \in T$, $p^{*} \cap \vec{b} \in D$.

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{\frown} \alpha \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Proposition (The strong Prikry Property)

Suppose that $p \in \mathbb{M}[\vec{U}]$ and $D \subseteq \mathbb{M}[\vec{U}]$ is a dense open subset. Then there is $p^* \geq^* p$ and a \vec{U} -fat tree T, such that for every maximal branch $\vec{b} \in T$, $p^{*} \cap \vec{b} \in D$.

Proof of lemma.

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{\frown} \alpha \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Proposition (The strong Prikry Property)

Suppose that $p \in \mathbb{M}[\vec{U}]$ and $D \subseteq \mathbb{M}[\vec{U}]$ is a dense open subset. Then there is $p^* \geq^* p$ and a \vec{U} -fat tree T, such that for every maximal branch $\vec{b} \in T$, $p^{*} \cap \vec{b} \in D$.

Proof of lemma.

Assume for example that $A = \{a_n \mid n < \omega\}$ and let $\langle a_n \mid n < \omega \rangle$ be a sequence of $\mathbb{M}[\vec{U}]$ -names for A.

Definition

A tree $T \subseteq [\kappa]^{<\omega}$ is called a \vec{U} -fat tree, if $ht(T) < \omega$ and for every $t \in T$, either t is a maximal element of the tree, or $succ_T(t) := \{\alpha < \kappa \mid t^{\frown} \alpha \in T\} \in U(\beta, i) \text{ for some } \beta \leq \kappa \text{ and } i < o^{\vec{U}}(\beta).$

Proposition (The strong Prikry Property)

Suppose that $p \in \mathbb{M}[\vec{U}]$ and $D \subseteq \mathbb{M}[\vec{U}]$ is a dense open subset. Then there is $p^* \geq^* p$ and a \vec{U} -fat tree T, such that for every maximal branch $\vec{b} \in T$, $p^{*} \cap \vec{b} \in D$.

Proof of lemma.

Assume for example that $A = \{a_n \mid n < \omega\}$ and let $\langle \underline{a}_n \mid n < \omega\rangle$ be a sequence of $\mathbb{M}[\vec{U}]$ -names for A. Let $p \in \mathbb{M}[\vec{U}]$, for each n apply the Strong Prikry property to find $p \leq^* p_n$ and a \vec{U} -fat tree T_n such that for every $\vec{\beta} \in mb(T_n)$, there is $\gamma p_n \beta \in m = \gamma$. Denote by $f_n(\vec{\beta}) = \gamma$.

18 / 30

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1.

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$.

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$.

Using combinatorical properties of \overline{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1-1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$.

Using combinatorical properties of \overline{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$. In V[C] we can construct $A = \{f_n(D_n) \mid n < \omega\}$ and in V[A] we can calculate each D_n , $D_n = f_n^{-1}(a_n)$, then $C = \bigcup_{n < \omega} f_n^{-1}(a_n)$. Thus V[A] = V[C]. \Box

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$. In V[C] we can construct $A = \{f_n(D_n) \mid n < \omega\}$ and in V[A] we can calculate each D_n , $D_n = f_n^{-1}(a_n)$, then $C = \bigcup_{n < \omega} f_n^{-1}(a_n)$. Thus V[A] = V[C]. \Box

Next we let $A \subseteq \kappa$. We split into two cases according to the following definition:

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$. In V[C] we can construct $A = \{f_n(D_n) \mid n < \omega\}$ and in V[A] we can calculate each D_n , $D_n = f_n^{-1}(a_n)$, then $C = \bigcup_{n < \omega} f_n^{-1}(a_n)$. Thus V[A] = V[C].

Next we let $A \subseteq \kappa$. We split into two cases according to the following definition:

Definition

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$. In V[C] we can construct $A = \{f_n(D_n) \mid n < \omega\}$ and in V[A] we can calculate each D_n , $D_n = f_n^{-1}(a_n)$, then $C = \bigcup_{n < \omega} f_n^{-1}(a_n)$. Thus V[A] = V[C].

Next we let $A \subseteq \kappa$. We split into two cases according to the following definition:

Definition

Say that $A \subseteq On$ stabilizes, if there is $\beta < \kappa$ such that $\forall \alpha < \sup(A) . A \cap \alpha \in V[C_G \cap \beta].$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Using combinatorical properties of \vec{U} -fat trees, we can extend p_n to some p_n^* and collapse some of the levels of T_n to T_n^* such that the restriction of f_n to T_n^* , will be 1 - 1. By \leq^* -closure, find a single p_ω such that $p_n \leq^* p_\omega$ for every $n < \omega$ and by density find such $p^* \in G$. There will always be a branch D_n such that $p^* \cap D_n \in G$. Since $(a_n)_G = a_n$ it follows that $f_n(D_n) = a_n$, define $C = \bigcup_{n < \omega} D_n$. In V[C] we can construct $A = \{f_n(D_n) \mid n < \omega\}$ and in V[A] we can calculate each D_n , $D_n = f_n^{-1}(a_n)$, then $C = \bigcup_{n < \omega} f_n^{-1}(a_n)$. Thus V[A] = V[C].

Next we let $A \subseteq \kappa$. We split into two cases according to the following definition:

Definition

Say that $A \subseteq On$ stabilizes, if there is $\beta < \kappa$ such that $\forall \alpha < \sup(A) . A \cap \alpha \in V[C_G \cap \beta].$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Example

< 一型

э

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{\alpha_n \mid n < \omega\} \cap \delta \in V = V[C_G \cap 0].$

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{\alpha_n \mid n < \omega\} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{ \alpha_n \mid n < \omega \} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{ \alpha_n \mid n < \omega \} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

An example of A which does not stabilize, we can take the $A = C_G$ or any $C \subseteq C_G$ such that Lim(C) is unbounded in κ .

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{ \alpha_n \mid n < \omega \} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

An example of A which does not stabilize, we can take the $A = C_G$ or any $C \subseteq C_G$ such that Lim(C) is unbounded in κ .

Let us show some of the main ideas in the proof for a non stabilizing *A*. First we note that:

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{ \alpha_n \mid n < \omega \} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

An example of A which does not stabilize, we can take the $A = C_G$ or any $C \subseteq C_G$ such that Lim(C) is unbounded in κ .

Let us show some of the main ideas in the proof for a non stabilizing A. First we note that:

Lemma

Example

An example for A that stabilizes if for example the canonical ω -sequence $\langle \alpha_n \mid n < \omega \rangle$ we defined in previous examples. Any bounded initial segment of it is final and therefore belongs to the ground model. So we can take $\beta = 0$ for example and $\forall \delta < \kappa . \{ \alpha_n \mid n < \omega \} \cap \delta \in V = V[C_G \cap 0].$

For A which stabilizes there is a nice argument which we wont prove here.

Example

An example of A which does not stabilize, we can take the $A = C_G$ or any $C \subseteq C_G$ such that Lim(C) is unbounded in κ .

Let us show some of the main ideas in the proof for a non stabilizing A. First we note that:

Lemma

If $A \subseteq \kappa$ does not stabilize, then $\theta_A := cf^{V[A]}(\kappa) < \kappa$.

э

proof

	hamou	

< □ > < ---->

э

proof

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]).

proof

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$.

proof

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$.

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$. It is impossible that $C \setminus \delta$ is finite, otherwise, $C \in V[C_G \cap \delta]$ and also $A \cap \beta \in V[C_G \cap \delta]$.

• • • • • • • •

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$. It is impossible that $C \setminus \delta$ is finite, otherwise, $C \in V[C_G \cap \delta]$ and also $A \cap \beta \in V[C_G \cap \delta]$. Let $\rho = \min(Lim(C) \setminus \delta)$. By minimality, $otp(C \cap (\delta, \rho)) = \omega$, hence $cf^{V[A]}(\rho) = \omega$. If $\rho = \kappa$, the we are done.

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subset Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$. It is impossible that $C \setminus \delta$ is finite, otherwise, $C \in V[C_G \cap \delta]$ and also $A \cap \beta \in V[C_G \cap \delta]$. Let $\rho = \min(Lim(C) \setminus \delta)$. By minimality, $otp(C \cap (\delta, \rho)) = \omega$, hence $cf^{V[A]}(\rho) = \omega$. If $\rho = \kappa$, the we are done. Otherwise, $\rho < \kappa$, $\rho \in Lim(C_G)$, therefore, ρ was measurable in V which means that $\rho \in X_{\Delta} \setminus \delta$.

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subset Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$. It is impossible that $C \setminus \delta$ is finite, otherwise, $C \in V[C_G \cap \delta]$ and also $A \cap \beta \in V[C_G \cap \delta]$. Let $\rho = \min(Lim(C) \setminus \delta)$. By minimality, $otp(\mathcal{C} \cap (\delta, \rho)) = \omega$, hence $cf^{V[A]}(\rho) = \omega$. If $\rho = \kappa$, the we are done. Otherwise, $\rho < \kappa$, $\rho \in Lim(C_G)$, therefore, ρ was measurable in V which means that $\rho \in X_A \setminus \delta$. If $|X_A| < \kappa$, then $\theta_A < \kappa$. Otherwise, enumerate $X_A = \{x_i \mid i < \kappa\}$, define in V[A]: $\beta_0 = \kappa^*$ and $\beta_{n+1} = x_{\beta_n}$.

イロト 人間ト イヨト イヨト

Consider the set $X_A = \{\nu < \kappa \mid cf^{V[A]}(\nu) < cf^V(\nu) = \nu\}$. Note that $Cl(X_A) \subseteq Lim(C_G)$, since only the points in $Lim(C_G)$ change cofinality in V[G] (thus in V[A]). Let us argue that X_A is unbounded, if $\delta < \kappa$, since A does not stabilize, there is $\beta < \kappa$ such that $A \cap \beta \notin V[C_G \cap \delta]$. By the previous part, there is $C \subseteq C_G$ such that $V[C] = V[A \cap \beta] \subseteq V[A]$. It is impossible that $C \setminus \delta$ is finite, otherwise, $C \in V[C_G \cap \delta]$ and also $A \cap \beta \in V[C_G \cap \delta]$. Let $\rho = \min(Lim(C) \setminus \delta)$. By minimality, $otp(\mathcal{C} \cap (\delta, \rho)) = \omega$, hence $cf^{V[A]}(\rho) = \omega$. If $\rho = \kappa$, the we are done. Otherwise, $\rho < \kappa$, $\rho \in Lim(C_G)$, therefore, ρ was measurable in V which means that $\rho \in X_A \setminus \delta$. If $|X_A| < \kappa$, then $\theta_A < \kappa$. Otherwise, enumerate $X_A = \{x_i \mid i < \kappa\}$, define in V[A]: $\beta_0 = \kappa^*$ and $\beta_{n+1} = x_{\beta_n}$. Since $X_A \subset C_G$, if follows that for every $n, \beta_n \geq \alpha_n$, and therefore $\sup_{n < \omega} \beta_n = \kappa$, hence $\theta_A = \omega$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

how do we construct C?

how do we construct C? Fix a cofinal sequence $\langle \alpha_i | i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$.

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

• Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

Definition (Mathias set)

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

Definition (Mathias set)

A set $D \in V[A]$ is called a *Mathias set*, if

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

Definition (Mathias set)

A set $D \in V[A]$ is called a *Mathias set*, if

 $Iim(D) \subseteq CI(X_A).$

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

Definition (Mathias set)

A set $D \in V[A]$ is called a *Mathias set*, if

- 1 $Lim(D) \subseteq Cl(X_A)$.
- So For all δ ∈ Lim(D) and Y ∈ ∩_{i < o^Ū(δ)} U(δ, i), there is ξ < δ such that D ∩ (ξ, δ) ⊆ Y.</p>

how do we construct *C*? Fix a cofinal sequence $\langle \alpha_i \mid i < \theta_A \rangle \in V[A]$. For $i < \theta_A$, apply induction to find $C_i \subseteq C_G$ such that $V[C_i] = V[A \cap \alpha_i]$. The sequence $\langle C_i \mid i < \theta_A \rangle$ entails the information needed to construct *A*. It is tempting to define $C = \bigcup_{i < \theta_A} C_i$. However there are two problems here:

- Although each $C_i \in V[A \cap \alpha_i] \subseteq V[A]$, the entire sequence $\langle C_i \mid i < \theta_A \rangle$ is not necessarily in V[A].
- When taking the union we might loss information i.e it is possible that some C_i ∉ V[C].

Definition (Mathias set)

A set $D \in V[A]$ is called a *Mathias set*, if

- $Iim(D) \subseteq Cl(X_A).$
- So For all δ ∈ Lim(D) and Y ∈ ∩_{i < o^Ū(δ)} U(δ, i), there is ξ < δ such that D ∩ (ξ, δ) ⊆ Y.</p>

The main property of a Mathias set is:

э

Proposition

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G .

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Let $Y \in V[C_G]$ be a set of ordinals, $|Y| < \kappa$, such that $C_G \cap Y = \emptyset$. Then there is $X \in \bigcap_{i < o(\kappa)} U(\kappa, i)$ such that $X \cap Y = \emptyset$.

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Let $Y \in V[C_G]$ be a set of ordinals, $|Y| < \kappa$, such that $C_G \cap Y = \emptyset$. Then there is $X \in \bigcap_{i < o(\kappa)} U(\kappa, i)$ such that $X \cap Y = \emptyset$.

To overcome the first problem we pick in V[A] a sequence of Mathias sets $\langle D_i | i < \theta_A \rangle$ such that $V[A \cap \alpha_i] = V[D_i]$.

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Let $Y \in V[C_G]$ be a set of ordinals, $|Y| < \kappa$, such that $C_G \cap Y = \emptyset$. Then there is $X \in \bigcap_{i < o(\kappa)} U(\kappa, i)$ such that $X \cap Y = \emptyset$.

To overcome the first problem we pick in V[A] a sequence of Mathias sets $\langle D_i | i < \theta_A \rangle$ such that $V[A \cap \alpha_i] = V[D_i]$. Note that a new problem was created, $D := \bigcup_{i < \theta_A} D_i$ can accumulate infinite noise and seize to be Mathias.

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Let $Y \in V[C_G]$ be a set of ordinals, $|Y| < \kappa$, such that $C_G \cap Y = \emptyset$. Then there is $X \in \bigcap_{i < o(\kappa)} U(\kappa, i)$ such that $X \cap Y = \emptyset$.

To overcome the first problem we pick in V[A] a sequence of Mathias sets $\langle D_i | i < \theta_A \rangle$ such that $V[A \cap \alpha_i] = V[D_i]$. Note that a new problem was created, $D := \bigcup_{i < \theta_A} D_i$ can accumulate infinite noise and seize to be Mathias. Fortunately, $|D \setminus C_G| \le \theta_A < \kappa$, and by the Hausdorff property, there is Y which filters this noise.

Benhamou, T.

イロト 人間ト イヨト イヨト

Proposition

Let $D \in V[A]$. A is a Mathias set iff $D \subseteq^* C_G$ i.e. $D \setminus C_G$ is finite.

The direction $D \subseteq^* C_G$ implies that D is a Mathias set, is a standard density argument in C_G . For the other direction, we have use the following property which is known also for other Prikry-type forcing [1],[2]:

Lemma (Hausdorff Property)

Let $Y \in V[C_G]$ be a set of ordinals, $|Y| < \kappa$, such that $C_G \cap Y = \emptyset$. Then there is $X \in \bigcap_{i < o(\kappa)} U(\kappa, i)$ such that $X \cap Y = \emptyset$.

To overcome the first problem we pick in V[A] a sequence of Mathias sets $\langle D_i \mid i < \theta_A \rangle$ such that $V[A \cap \alpha_i] = V[D_i]$. Note that a new problem was created, $D := \bigcup_{i < \theta_A} D_i$ can accumulate infinite noise and seize to be Mathias. Fortunately, $|D \setminus C_G| \le \theta_A < \kappa$, and by the Hausdorff property, there is Y which filters this noise. The second problem is a bit more technical to fix.

Benhamou, T.

Sketch of the Proof- $\sup(A) \ge \kappa^+$

Image: Image:

æ

Sketch of the Proof- $\sup(A) \ge \kappa^+$

For sets A such that $\sup(A) \ge \kappa^+$, we continue by induction on $\sup(A)$. The idea at the induction step it to first find a single $C \subseteq C_G$, such that for every $\alpha < \sup(A)$, $A \cap \alpha \in V[C]$.

Sketch of the Proof- $\sup(A) \ge \kappa^+$

For sets A such that $\sup(A) \ge \kappa^+$, we continue by induction on $\sup(A)$. The idea at the induction step it to first find a single $C \subseteq C_G$, such that for every $\alpha < \sup(A)$, $A \cap \alpha \in V[C]$. Then we claim that A must also be in V[C]. Otherwise, A is fresh with respect to $V[C] \subseteq V[G]$, which is a forcing extension by the quotient $\mathbb{M}[\vec{U}]/C$. the following two results says that such a situation is impossible:

Theorem (No Fresh Subsets of λ)

Theorem (No Fresh Subsets of λ)

Let $W \models ZFC$ and $\mathbb{P} \in W$ a forcing notion. Let $T \subseteq \mathbb{P}$ be any W-generic filter and λ a regular cardinal in W[T]. Assume \mathbb{P} is λ -c.c. in W[T]. Then in W[T] there are no fresh subsets of λ with respect to W.

Theorem (No Fresh Subsets of λ)

Let $W \models ZFC$ and $\mathbb{P} \in W$ a forcing notion. Let $T \subseteq \mathbb{P}$ be any W-generic filter and λ a regular cardinal in W[T]. Assume \mathbb{P} is λ -c.c. in W[T]. Then in W[T] there are no fresh subsets of λ with respect to W.

Theorem

イロト イ押ト イヨト イヨト

Theorem (No Fresh Subsets of λ)

Let $W \models ZFC$ and $\mathbb{P} \in W$ a forcing notion. Let $T \subseteq \mathbb{P}$ be any W-generic filter and λ a regular cardinal in W[T]. Assume \mathbb{P} is λ -c.c. in W[T]. Then in W[T] there are no fresh subsets of λ with respect to W.

Theorem

 $\mathbb{M}[\vec{U}]/C$ is $\kappa^+ - c.c.$ in V[G].

(日) (同) (三) (三)

Sketch of the Proof- $\sup(A) \ge \kappa^+$

Note that the standard argument for κ^+ -c.c. does not work:

Sketch of the Proof- $\sup(A) \ge \kappa^+$

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle \kappa, A_i \rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$.

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa, A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa, A_i \cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa, A_i \cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C?

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C? it consist of all the conditions $\langle \alpha_0, ..., \alpha_n, A \rangle$ such that:

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C? it consist of all the conditions $\langle \alpha_0, ..., \alpha_n, A \rangle$ such that:

1
$$\alpha_{2i} = C_G(2i).$$

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C? it consist of all the conditions $\langle \alpha_0, ..., \alpha_n, A \rangle$ such that:

$$a_{2i} = C_G(2i).$$

2 For
$$m > n/2$$
, $C_G(2m) \in A$.

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C? it consist of all the conditions $\langle \alpha_0, ..., \alpha_n, A \rangle$ such that:

$$a_{2i} = C_G(2i).$$

2 For
$$m > n/2$$
, $C_G(2m) \in A$.

• For m > n/2, $(C_G(2m-2), C_G(2m)) \cap A \neq \emptyset$.

30

Note that the standard argument for κ^+ -c.c. does not work: Assume otherwise, and let $\langle p_i \mid i < \kappa^+ \rangle \in V[G]$ be an antichain in $\mathbb{M}[\vec{U}]/C$. Each p_i is of the form $p_{i,\downarrow}^{\frown}\langle\kappa,A_i\rangle$. Since κ^+ is still regular in V[G] and there are κ many possibilities for $p_{i,\downarrow}$, there are $i \neq j$ such that $p_{\downarrow} := p_{i,\downarrow} = p_{j,\downarrow}$. It follows that $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle \geq p_i, p_j$. However, the condition $p_{\downarrow}^{\frown}\langle\kappa,A_i\cap A_j\rangle$ might not be in $\mathbb{M}[\vec{U}]/C$:

Example

Consider the standard Prikry forcing, and assume that $C = \{C_G(2n) \mid n < \omega\}$. What is P(U)/C? it consist of all the conditions $\langle \alpha_0, ..., \alpha_n, A \rangle$ such that:

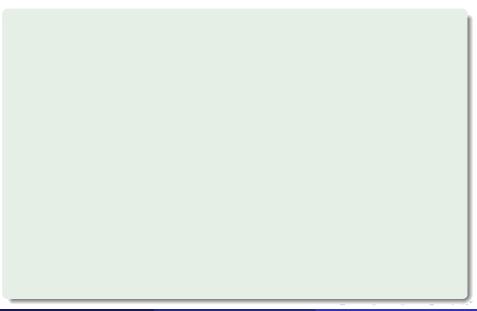
$$a_{2i} = C_G(2i).$$

2 For
$$m > n/2$$
, $C_G(2m) \in A$.

• For m > n/2, $(C_G(2m-2), C_G(2m)) \cap A \neq \emptyset$.

The third condition might fail when intersecting large sets.

30



We pick names for $\underset{\sim}{p_i}$ and find $r \vdash \forall i < \kappa^+ . \underbrace{p}_i \in \mathbb{M}[\vec{U}]/\underbrace{C}$ is an antichian

also we extend to r_i so that $r_i \vdash p_i = q_i$.

We pick names for p_i and find

$$r dash orall i < \kappa^+ . \, {oldsymbol p}_i \in \mathbb{M}[ec U]/\mathcal{L}$$
 is an antichian

also we extend to r_i so that $r_i \vdash p_i = q_i$. Now it is possible to stabilize the lower part of both r_i 's and q_i 's, $\widetilde{r_i} = \langle \alpha_0, ..., \alpha_n, A_i \rangle$, $q_i = \langle \beta_0, ..., \beta_m, B_i \rangle$ The fact that $r_i \vdash q_i \in \mathbb{M}[\vec{U}]/\mathcal{C}_i$ is equivalent to:

We pick names for p_i and find

$$r dash orall i < \kappa^+ . \, {oldsymbol
ho}_i \in \mathbb{M}[ec{U}]/\mathcal{C}$$
 is an antichian

also we extend to r_i so that $r_i \vdash p_i = q_i$. Now it is possible to stabilize the lower part of both r_i 's and q_i 's, $\widetilde{r_i} = \langle \alpha_0, ..., \alpha_n, A_i \rangle$, $q_i = \langle \beta_0, ..., \beta_m, B_i \rangle$ The fact that $r_i \vdash q_i \in \mathbb{M}[\vec{U}]/\mathcal{C}_i$ is equivalent to:

$$1 n \geq m, \text{ and } \beta_{2k} = \alpha_{2k}.$$

- $A_i \subseteq B_i$ and for every $x, y \in A_i, x < y$ implies that $(x, y) \cap B_i \neq \emptyset$.

We pick names for p_i and find

$$r dash orall i < \kappa^+ . egin{array}{c} \mu_i \in \mathbb{M}[ec{U}]/ec{\mathcal{L}} \ ext{is an antichian} \end{array}$$

also we extend to r_i so that $r_i \vdash p_i = q_i$. Now it is possible to stabilize the lower part of both r_i 's and q_i 's, $\widetilde{r_i} = \langle \alpha_0, ..., \alpha_n, A_i \rangle$, $q_i = \langle \beta_0, ..., \beta_m, B_i \rangle$ The fact that $r_i \vdash q_i \in \mathbb{M}[\vec{U}]/\mathcal{C}_i$ is equivalent to:

$$1 n \geq m, \text{ and } \beta_{2k} = \alpha_{2k}.$$

 $\ \, \textbf{ or } \ \, m/2 < k \leq n/2, \ \, \alpha_{2k} \in B_i \ \, \textbf{and} \ \, (\alpha_{2k-2},\alpha_{2k}) \cap B_i \neq \emptyset.$

③ $A_i \subseteq B_i$ and for every $x, y \in A_i$, x < y implies that $(x, y) \cap B_i \neq \emptyset$.

Note that we can also stabilize the part of the large set of q_i below α_n which guarantees that the intersection of r_i and r_j satisfy (1), (2), as for (3), we can shrink even more $A_i \cap A_j$ to a set X so that (3) holds with respect to B_i, B_j .

We pick names for p_i and find

$$r dash orall i < \kappa^+ . egin{array}{c} \mu_i \in \mathbb{M}[ec{U}]/ec{\mathcal{L}} \ ext{is an antichian} \end{array}$$

also we extend to r_i so that $r_i \vdash p_i = q_i$. Now it is possible to stabilize the lower part of both r_i 's and q_i 's, $\widetilde{r_i} = \langle \alpha_0, ..., \alpha_n, A_i \rangle$, $q_i = \langle \beta_0, ..., \beta_m, B_i \rangle$ The fact that $r_i \vdash q_i \in \mathbb{M}[\vec{U}]/\mathcal{C}_i$ is equivalent to:

$$1 n \geq m, \text{ and } \beta_{2k} = \alpha_{2k}.$$

 $\ \, \textbf{O} \ \, \textbf{for} \ \, m/2 < k \leq n/2, \ \, \alpha_{2k} \in B_i \ \, \textbf{and} \ \, (\alpha_{2k-2},\alpha_{2k}) \cap B_i \neq \emptyset.$

● $A_i \subseteq B_i$ and for every $x, y \in A_i$, x < y implies that $(x, y) \cap B_i \neq \emptyset$.

Note that we can also stabilize the part of the large set of q_i below α_n which guarantees that the intersection of r_i and r_j satisfy (1), (2), as for (3), we can shrink even more $A_i \cap A_j$ to a set X so that (3) holds with respect to B_i, B_j . The condition $r^* = \langle \alpha_0, ..., \alpha_n, X \rangle$ forces that p_i, p_j are compatible by $\langle \beta_0, ..., \beta_m, B_i \cap B_j \rangle \in \mathbb{M}[\vec{U}]/C$.

э

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

Theorem ([2])

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

Theorem ([2])

Assume that for every $\alpha \leq \kappa$, $o^{\vec{U}}(\alpha) < \alpha$. Then for every V-generic filter $G \subseteq \mathbb{M}[\vec{U}]$ and every transitive ZFC intermediate model $V \subseteq M \subseteq V[G]$, there is a closed subset $C_{fin} \subseteq C_G$ such that:

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

Theorem ([2])

Assume that for every $\alpha \leq \kappa$, $o^{\vec{U}}(\alpha) < \alpha$. Then for every V-generic filter $G \subseteq \mathbb{M}[\vec{U}]$ and every transitive ZFC intermediate model $V \subseteq M \subseteq V[G]$, there is a closed subset $C_{fin} \subseteq C_G$ such that: **1** $M = V[C_{fin}]$.

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

Theorem ([2])

Assume that for every α <≤ κ, o^Ū(α) < α. Then for every V-generic filter G ⊆ M[Ū] and every transitive ZFC intermediate model V ⊆ M ⊆ V[G], there is a closed subset C_{fin} ⊆ C_G such that:
M = V[C_{fin}].
There is a finite iteration Q := M_{f1}[Ū] * M_{f2}[Ū]... * M_{fn}[Ū], and H^{*} ⊂ Q, V-generic H^{*} filter such that V[H^{*}] = V[C_{fin}] = M.

If $o^{\vec{U}}(\kappa) < \kappa$, then we have the following characterization of the intermediate models:

Theorem ([2])

Assume that for every $\alpha \leq \kappa$, $o^{\vec{U}}(\alpha) < \alpha$. Then for every V-generic filter $G \subseteq \mathbb{M}[\vec{U}]$ and every transitive ZFC intermediate model $V \subseteq M \subseteq V[G]$, there is a closed subset $C_{\text{fin}} \subseteq C_G$ such that:

- $M = V[C_{fin}].$
- **2** There is a finite iteration $\mathbb{Q} := \mathbb{M}_{f_1}[\vec{U}] * \mathbb{M}_{f_2}[\vec{U}] ... * \mathbb{M}_{f_n}[\vec{U}]$, and $H^* \subseteq \mathbb{Q}$, V-generic H^* filter such that $V[H^*] = V[C_{fin}] = M$.

In the first example, the model is in fact a two steps iteration, the first parts adds a Prikry sequence to $C_G(\omega)$, so $f_1 : \omega \to \kappa$, $f_1(n) = 0$. The second part is of the form $\mathbb{M}_{\mathcal{L}}[\vec{U}]$, where $f_{\mathcal{L}}$ is a name for the function $f : \omega \to \delta_0$ defined by $f(n) = C_G(n)$.

References I

- Tom Benhamou, *Prikry Forcing and Tree Prikry Forcing of Various Filters*, Arch. Math. Logic **58** (2019), 787–817.
- Tom Benhamou and Moti Gitik, *Intermediate Models of Magidor-Radin Foring-Part I*, arXiv:2009.12775 (2020), submitted to Israely Journal of Mathematics.

Sets in Prikry and Magidor Generic Extensions, Annals of Pure and Applied Logic 172 (2021), no. 4, 102926.

- Moti Gitik, Prikry-Type Forcings, pp. 1351–1447, Springer Netherlands, Dordrecht, 2010.
- Moti Gitik, On κ -Compact Cardinals, preprint (to appear).
- Moti Gitik, Vladimir Kanovei, and Peter Koepke, *Intermediate Models* of *Prikry Generic Extensions*, Pre Print (2010).

- Akihiro Kanamori, The Higher Infinite, Springer, 1994.
 - Peter Koepke, Karen Rasch, and Philipp Schlicht, Minimal Prikry-Type Forcing for Singularizing a Measurable Cardinal, J. Symb. Logic 78 (2013), 85–100.
 - Menachem Magidor, *Changing the cofinality of cardinals*, Fundamenta Mathematicae **99** (1978), 61–71.
 - A. R. D. Mathias, *On Sequences Generic in the Sense of Prikry*, Journal of Australian Mathematical Society **15** (1973), 409–414.

Thank you for your attention!

- 一司

3