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1 Sigma-Prikry forcing I: The axioms, Canadian Journal of Mathematics, to appear.
2 Sigma-Prikry forcing II: Iteration Scheme, Journal of Mathematical Logic, to

appear.
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Find the papers here!
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http://assafrinot.com/?t=sigma-prikry


Dr
aft

The talk in a nutshell

The three main characters of the talk are:

1 Stationary reflection at successors of singulars (Compactness).
2 The failure of the SCH (Incompactness).
3 Prikry-type forcings and their iterations.

Goal
Show how the latter can be used to resolve the intrinsic tension between (1) and (2).
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An application

The very first application of the Σ-Prikry framework:

Theorem (P., Rinot, Sinapova) (JML-2020)
Assume that 〈κn | n < ω〉 is an increasing sequence of supercompact cardinals. Then there
is a generic extension where κ = supn<ω κn is a strong limit cardinal, SCHκ fails and
Refl(<ω,κ+) holds.

Independently proved by Ben-Neria, Hayut and Unger, and shortly after by Gitik. Was
part of Sharon’s Ph.D. thesis (’05), but unfortunately the proof was incomplete.
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Compactness principles

Compactness Principle
A Compactness Principle for a given property ϕ is a statement of the form:

“If every small substructure has property ϕ then the structure has property ϕ, as well”

The dual of CP are Reflection Principles:

Reflection Principle
A Reflection Principle for a given property ϕ is a statement of the form:

“If a structure has property ϕ then there is a small substructure having property ϕ”

In practice, small means “having cardinality <κ”, where κ is some relevant cardinal
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Compactness in Logic

Definition
A set of sentences Γ is called κ-satisfiable, if every T ∈ [Γ]<κ is satisfiable.

Theorem (Compactness of First Order Logic)
Any collection Lω,ω-sentences which is ℵ0-satisfiable, is satisfiable.

Question
For which cardinals κ ≥ ℵ1, the logics Lκ,κ (or Lnκ,κ) are κ-compact?

Theorem (Tarski/Magidor)
The following are equivalent:

1 Lκ,κ (resp. L2
κ,κ) is κ-compact.

2 κ is a strongly compact (extendible).
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Compactness in Algebra

Definition
Let κ ≥ ℵ0. An abelian group is called κ-free if all its subgroups of size <κ are free.

Question
For what cardinals κ every κ-free abelian group of cardinality κ is also free?

Shelah’s Compactness Theorem
If κ is a singular cardinal then every κ-free abelian group of size κ is free
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Compactness in Set Theory

Definition
Let κ be a regular uncountable cardinal.

1 A set C ⊆ κ is called a club if it is closed and unbounded.
2 A set S ⊆ κ is called stationary if S ∩C 6= ∅, for every club C ⊆ κ.

Fact: For every club C ⊆ κ there is a club D ⊆ C such that for each α ∈ D,
C ∩ α is a club.

Informally speaking, club sets reflect.

Question (naive version):
Do stationary sets reflect?
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Compactness in Set Theory: Stationary reflection

Definition
1 A stationary set S ⊆ κ reflects if there is α < κ with cf(α) > ℵ0 such that S ∩ α is

stationary in α.

2 For a given stationary set S ⊆ κ, the principle Refl(S) asserts that every stationary
subset T ⊆ S reflects.

Question
For which cardinals κ and stationaries S ⊆ κ does Refl(S) hold?

We need to separate the discussion into three cases:
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1 Limit cardinals:

Theorem (Tarski (?), Jensen (1972))
If κ is weakly compact then Refl(κ) holds. Under V = L, this is an equivalence.

2 Successor of a regular: Set κ := λ+, with λ = cf(λ).

Refl(κ) fails
Actually Refl(Eκλ) fails, where Eκλ = {α < κ | cf(α) = λ}. Indeed, let α < κ be with
cf(α) > ℵ0 and C ⊆ α be a club of points of cofinality <λ. Clearly, C ∩Eκλ = ∅, and so
Eκλ ∩ α is not stationary.

Despite of this we can still obtain an optimal reflection pattern:

Theorem (Harrington & Shelah) (NDJFL - 1985)
The following are equiconsistent:
I There is a Mahlo cardinal.
I Refl(Eκ<λ) holds.
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3 Successors of a singular:

Unlike of successors of regulars now one can arrange full reflection:

Theorem (Magidor) (JSL–1982)
Assume there are ω-many supercompact cardinals and that the GCH holds. Then there is a
generic extension where Refl(ℵω+1) holds.

This strong large-cardinal assumptions do not appear by chance.
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The other side of the coin: square principles

Definition (Jensen)
Let κ be an infinite cardinal. A sequence 〈Cα | α < κ+〉 is called a �κ-sequence if the
following are true for each α < κ+:

1 Cα ⊆ α is a club set;
2 if cf(α) < κ then otp(Cα) < κ;
3 for all β ∈ lim(Cα), Cα ∩ β = Cβ.

We say that �κ holds if there is a �κ-sequence.

�-sequences are prototypical manifestations of incompactness
If �κ holds then there is no club C ⊆ κ+ threading 〈Cα | α < κ+〉. In other words, there is
no club set C ⊆ κ+ that may continue the �κ-sequence.
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1 �κ is incompatible with Refl(κ+). Specifically, if �κ holds then Refl(S) fails, for
every stationary set S ⊆ κ+.

2 Avoiding �κ is hard and costly, and thus so is getting Refl(κ+):
(ℵ) Why is it hard?

If W is L-like, then W |= “∀κ ≥ ℵ0 �κ”.
If W is L-like and W resembles sufficiently V, then �κ holds.

(i) Why is it costly? The failure of square yields inner models with large cardinals
(e.g., if �ω1 fails then ℵ2 is Mahlo in L)

This is even more dramatic when the relevant cardinal is singular:
(e.g., if �κ fails then there is an inner model with ∞-many Woodin cardinals)

Arranging Refl(κ+) is always hard and costly.
Specially if κ is singular.
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The behaviour of the continuum function

While the behaviour of the continuum function is almost arbitrary at regular cardinals,

Theorem (Easton)
Assume the GCH holds. For every pair of regular cardinals κ < λ there is a generic
extension where GCH<κ holds and 2κ = λ

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver’s compactness theorem
For every singular κ of uncountable cofinality if GCH<κ holds then GCHκ also does.

Question
Does Silver’s theorem extends for singular cardinals of countable cofinality?



Dr
aft

The behaviour of the continuum function

While the behaviour of the continuum function is almost arbitrary at regular cardinals,

Theorem (Easton)
Assume the GCH holds. For every pair of regular cardinals κ < λ there is a generic
extension where GCH<κ holds and 2κ = λ

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver’s compactness theorem
For every singular κ of uncountable cofinality if GCH<κ holds then GCHκ also does.

Question
Does Silver’s theorem extends for singular cardinals of countable cofinality?



Dr
aft

The behaviour of the continuum function

While the behaviour of the continuum function is almost arbitrary at regular cardinals,

Theorem (Easton)
Assume the GCH holds. For every pair of regular cardinals κ < λ there is a generic
extension where GCH<κ holds and 2κ = λ

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver’s compactness theorem
For every singular κ of uncountable cofinality if GCH<κ holds then GCHκ also does.

Question
Does Silver’s theorem extends for singular cardinals of countable cofinality?



Dr
aft

The behaviour of the continuum function

While the behaviour of the continuum function is almost arbitrary at regular cardinals,

Theorem (Easton)
Assume the GCH holds. For every pair of regular cardinals κ < λ there is a generic
extension where GCH<κ holds and 2κ = λ

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver’s compactness theorem
For every singular κ of uncountable cofinality if GCH<κ holds then GCHκ also does.

Question
Does Silver’s theorem extends for singular cardinals of countable cofinality?



Dr
aft

The Singular Cardinal Hypothesis

Definition (simplified version)
The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong
limit cardinal κ, 2κ = κ+ (i.e., SCHκ holds).

Question
1 Is the failure of the SCH consistent with ZFC?

( )
2 Which is (consistently) the first witness for ¬SCH?

I ¬SCH is consistent modulo the existence of a κ++-supercompact cardinal κ.
(Silver & Prikry)

I By Silver’s it cannot be ℵω1 , but could it be ℵω?

Yes
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Theorem (Magidor) (Ann. Math –1977)
Assume there is a supercompact cardinal along with a huge cardinal on top. Then there is
a generic extension where GCH<ℵω holds but SCHℵω fails.

Theorem (Gitik, Woodin) (Optimal assumptions)
If there exists a measurable cardinal κ with Mitchell order κ++, then there is a generic
extension where GCH<ℵω holds but SCHℵω fails.
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There is tension between ¬SCHκ and Refl(κ+)

I Getting ¬SCH usually involves singularizing cardinals;
I Singularizing typically yields weak forms of square, which are at odds with reflection.

Theorem (Gitik - Džamonja & Shelah)
Suppose V ⊆W are two inner models where a cardinal κ is a V -inaccessible but
W -singular with cfW (κ) = ω. If moreover (κ+)V = (κ+)W then W |= �κ,ω.

It is both hard and costly to arrangeRefl(κ+) along with¬SCHκ.
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“Is hard to manipulate the combinatorics of singulars”, yet again

There are essentially two sorts of obstacles when dealing with singular cardinals:

1 Foundational: Almost any manipulation requires very large-cardinals.
e.g., ¬SCHκ requires o(κ) = κ++ (Gitik & Woodin)

and ¬�κ implies ADL(R) (Steel)
2 Technical: Lack of iteration theorems at the level of singular cardinals.

Iteration Theorem
Every κ++-length and κ-supported iteration of κ++-cc forcing is again κ++-cc.

Goal
Prove an iteration theorem for singular cardinals and apply it to combine Refl(κ+) with
¬SCHκ.
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Iteration Theorem
Every κ++-length and κ-supported iteration of κ++-cc forcing has the κ++-cc.

Obstacle
Some additional properties over the forcings are required. A crucial one is κ-closedness,
which is not prevalent enough when κ is singular.

Shooting a club trough a stationary subset
Let κ with cf(κ) = ω and S ⊆ Eκ+ω stationary. Then the typical forcing using bounded
closed sets is not even ℵ1-closed!

Shortage of iteration theorems when κ singular
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Question
Is there any hope to succeed without κ-closedness?

An alternative: The Prikry workaround
Look at forcings P which have the Prikry property and are “layered-closed":

1 P can be written as
⋃
n<ω Pn, according to some reasonable notion of length.

2 The layers Pn are “eventually as closed as necessary”.

Example: Prikry forcing
Let P be Prikry forcing. Then,

1 P =
⋃
n<ω Pn, where Pn := {(s,A) | (s,A) ∈ P , |s| = n};

2 Pn is κ-directed closed.

Revised Strategy
Find an iteration theorem for κ++-length and κ-supported iterations of κ++-cc
Prikry-type forcings.
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Iteration schemes for Prikry-type forcings already exist (Magidor and Gitik iterations)
and they have been shown to be very successful. But, they seem to be useful to change
the universe below a given cardinal.

(e.g., Magidor’s proof of the Identity crises phenomenon)

As a result, two crucial features of these iterations are:
1 The chain condition of the iterates grows progressively.

We want to keep the same chain condition

2 The degree “layer-closedness” of the iterates increases along the iteration.

We want to maintain the degree of “layered-closedness”

Comparing both schemata
Magidor & Gitik iterations ∼= Easton-style iteration to force ¬GCHκ at a supercompact κ

Our iterations ∼= Forcing iteration to obtain FA2κ+ (Γ), for κ singular
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Σ-Prikry forcings in a nutshell
Σ = 〈κn | n < ω〉 is non-decreasing seq. of regular uncountable cardinals. Set κ := sup(Σ).

A Σ-Prikry poset is a triple (P, `, c) such that:

1 ` : P → ω is a “canonical notion of length”;
2 c : P → µ witnesses a strong form of µ+-Linkness, where 1l P µ̌ = κ̌+.

c(p) = c(q) =⇒ P p0 ∩ P
q
0 6= ∅.

3 P is a forcing poset such that:
I For each n < ω, Pn is κn-directed-closed;
I P has the Complete Prikry Property.

Prikry forcing
Σ := 〈κ〉, `(s,A) := |s|, c(s,A) := s, µ = (κ+)V .

The class of Σ-Prikry forcing is quite broad

(e.g., Gitik-Sharon, Extender Based Prikry, etc).
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Towards a model of ¬SCHκ+ Refl(<ω,κ+)

Set up
1 Let Σ := 〈κn | n < ω〉 be strictly increasing, where each κn is Laver indestructible

supercompact. Set κ := sup(Σ);
2 Let P be the Extender-Based Prikry forcing with respect to E = 〈En | n < ω〉, where
En is a (κn,κ++ + 1)-extender;

3 Assuming 22κ = κ++, we fix a bookkeeping function ψ : κ++ → Hκ++ .
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The first step: Which stationary sets reflects?

Proposition (P., Rinot & Sinapova - (2020))
Let Q be a Σ-Prikry forcing not collapsing κ+. Then V Q |= Refl(<ω,κ+ ∩ cfV (> ω)).

Strategy
Define a forcing iteration Pκ++ such that

1 Pκ++ is Σ-Prikry and does not collapse κ+,
2 V Pκ++ |= Refl(κ+ ∩ cfV (ω)),
3 Pκ++ projects to P.

Provided Pκ++ fulfills the above conditions it yields the desired generic extension.
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Iterating Σ-Prikry forcings

The slogan of our iterations
Let Q be a Σ-Prikry forcing and a problem σ ∈ V Q. We want a Σ-Prikry forcing A that
projects onto Q and settles the problem raised by σ.

The above is achieved by invoking a solving-problem functor A(·, ·) such that
0 A := A(Q,σ), “solves the problem raised by σ”

and for which there are maps (π,t) such that:
1 There is a projection π between A and Q

2 There is a canonical operation t to move from Q to A, which coheres with π

Upshot
Provided (1) & (2) of the above hold then A is not so far from being Σ-Prikry.
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The iteration scheme
1 Set P0 := ({∅},≤) and P1 := 1P;
2 Pα+1: If ψ(α) = (β, r,σ) with β < α, r ∈ Pβ, σ ∈ V Pβ and

r Pβ σ is a non-reflecting stationary set of κ+ ∩ cfV (ω),

then Pα+1 := A(Pα,σ), where A(·, ·) is a functor that destroys the stationarity of σ.

3 Pα is the κ-supported inverse limit of 〈Pβ | β < α〉.
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The above iteration scheme is successful

Fact
1 Pκ++ is Σ-Prikry and does not collapse κ+.

2 V Pκ++ |= Refl(κ+ ∩ cfV (ω)).
3 Pκ++ projects to P.

Proof
1 Corollary of our iteration theorem.

2 By the κ++-cc of Pκ++ and the usual “catch our tail” argument.
3 Essentially, by our assumption over the functors.
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A recent discovery

In recent joint work we have found a tweaking of Σ-Prikryness that encompasses forcings
with interleaved collapses. A remarkable forcing captured by this framework is Gitik’s
Extender Based Prikry forcing with interleaved collapses.

As an application of this new framework we prove the following:

Theorem (P., Rinot & Sinapova) (2020)
Assuming the consistency of infinitely many supercompact cardinals, it is consistent that all
of the following hold:

1 GCH<ℵω holds.
2 2ℵω = ℵω+2, hence SCHℵω fails.

}
Magidor - Ann. Math. (1977)

3 Refl(ℵω+1). } Magidor - JSL (1982)
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