A NEW ITERATION SCHEME WITH APPLICATIONS TO SINGULAR CARDINALS COMBINATORICS

Alejandro Poveda

Einstein Institute of Mathematics

Prikry Forcing Online - December 14th

This is based on a joint work with A. Rinot & D. Sinapova

- **Sigma-Prikry forcing I: The axioms**, Canadian Journal of Mathematics, to appear.
- Sigma-Prikry forcing II: Iteration Scheme, Journal of Mathematical Logic, to appear.
- Sigma-Prikry forcing III: Down to \aleph_{ω} , Preprint.

Find the papers here! http://assafrinot.com/t/sigma-prikry

Stationary reflection at successors of singulars (Compactness).

- Stationary reflection at successors of singulars (Compactness).
- **Over the SCH (Incompactness)**.

- Stationary reflection at successors of singulars (Compactness).
- **Over the SCH (Incompactness)**.
- Prikry-type forcings and their iterations.

- Stationary reflection at successors of singulars (Compactness).
- **Over the SCH (Incompactness)**.
- Prikry-type forcings and their iterations.

Goal

Show how the latter can be used to resolve the intrinsic tension between (1) and (2).

The very first application of the Σ -Prikry framework:

Theorem (P., Rinot, Sinapova) (JML-2020)

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a generic extension where $\kappa = \sup_{n < \omega} \kappa_n$ is a strong limit cardinal, SCH_{κ} fails and Refl($<\omega, \kappa^+$) holds.

The very first application of the Σ -Prikry framework:

Theorem (P., Rinot, Sinapova) (JML-2020)

Assume that $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals. Then there is a generic extension where $\kappa = \sup_{n < \omega} \kappa_n$ is a strong limit cardinal, SCH_{κ} fails and Refl($<\omega, \kappa^+$) holds.

Independently proved by **Ben-Neria, Hayut and Unger**, and shortly after by **Gitik**. Was part of **Sharon**'s Ph.D. thesis ('05), but unfortunately the proof was incomplete.

Stationary Reflection

Compactness Principle

A **Compactness Principle** for a given property φ is a statement of the form:

"If every small substructure has property φ then the structure has property φ , as well"

Compactness Principle

A **Compactness Principle** for a given property φ is a statement of the form:

"If every small substructure has property φ then the structure has property φ , as well"

The dual of CP are Reflection Principles:

Reflection Principle

A **Reflection Principle** for a given property φ is a statement of the form:

"If a structure has property φ then there is a *small* substructure having property φ "

Compactness Principle

A **Compactness Principle** for a given property φ is a statement of the form:

"If every small substructure has property φ then the structure has property φ , as well"

The dual of **CP** are **Reflection Principles**:

Reflection Principle

A **Reflection Principle** for a given property φ is a statement of the form:

"If a structure has property φ then there is a *small* substructure having property φ "

In practice, *small* means "having cardinality $<\kappa$ ", where κ is some relevant cardinal

A set of sentences Γ is called κ -satisfiable, if every $T \in [\Gamma]^{<\kappa}$ is satisfiable.

A set of sentences Γ is called κ -satisfiable, if every $T \in [\Gamma]^{<\kappa}$ is satisfiable.

Theorem (Compactness of First Order Logic)

Any collection $\mathcal{L}_{\omega,\omega}$ -sentences which is \aleph_0 -satisfiable, is satisfiable.

A set of sentences Γ is called κ -satisfiable, if every $T \in [\Gamma]^{<\kappa}$ is satisfiable.

Theorem (Compactness of First Order Logic)

Any collection $\mathcal{L}_{\omega,\omega}$ -sentences which is \aleph_0 -satisfiable, is satisfiable.

Question

For which cardinals $\kappa \geq \aleph_1$, the logics $\mathcal{L}_{\kappa,\kappa}$ (or $\mathcal{L}_{\kappa,\kappa}^n$) are κ -compact?

A set of sentences Γ is called κ -satisfiable, if every $T \in [\Gamma]^{<\kappa}$ is satisfiable.

Theorem (Compactness of First Order Logic)

Any collection $\mathcal{L}_{\omega,\omega}$ -sentences which is \aleph_0 -satisfiable, is satisfiable.

Question

For which cardinals $\kappa \geq \aleph_1$, the logics $\mathcal{L}_{\kappa,\kappa}$ (or $\mathcal{L}_{\kappa,\kappa}^n$) are κ -compact?

Theorem (Tarski/Magidor)

The following are equivalent:

- $\mathcal{L}_{\kappa,\kappa}$ (resp. $\mathcal{L}^2_{\kappa,\kappa}$) is κ -compact.
- **2** κ is a strongly compact (extendible).

Let $\kappa \geq \aleph_0$. An abelian group is called κ -free if all its subgroups of size $<\kappa$ are free.

Let $\kappa \geq \aleph_0$. An abelian group is called κ -free if all its subgroups of size $<\kappa$ are free.

Question

For what cardinals κ every $\kappa\text{-free}$ abelian group of cardinality κ is also free?

Let $\kappa \geq \aleph_0$. An abelian group is called κ -free if all its subgroups of size $<\kappa$ are free.

Question

For what cardinals κ every $\kappa\text{-free}$ abelian group of cardinality κ is also free?

Shelah's Compactness Theorem

If κ is a **singular** cardinal then every κ -free abelian group of size κ is free

Let κ be a regular uncountable cardinal.

- **()** A set $C \subseteq \kappa$ is called a **club** if it is closed and unbounded.
- **2** A set $S \subseteq \kappa$ is called **stationary** if $S \cap C \neq \emptyset$, for every club $C \subseteq \kappa$.

Let κ be a regular uncountable cardinal.

- **(**) A set $C \subseteq \kappa$ is called a **club** if it is closed and unbounded.
- **2** A set $S \subseteq \kappa$ is called **stationary** if $S \cap C \neq \emptyset$, for every club $C \subseteq \kappa$.

Fact: For every club $C \subseteq \kappa$ there is a club $D \subseteq C$ such that for each $\alpha \in D$, $C \cap \alpha$ is a club.

Let κ be a regular uncountable cardinal.

- **(**) A set $C \subseteq \kappa$ is called a **club** if it is closed and unbounded.
- **2** A set $S \subseteq \kappa$ is called **stationary** if $S \cap C \neq \emptyset$, for every club $C \subseteq \kappa$.

Fact: For every club $C \subseteq \kappa$ there is a club $D \subseteq C$ such that for each $\alpha \in D$, $C \cap \alpha$ is a club.

Informally speaking, club sets reflect.

Let κ be a regular uncountable cardinal.

- **(**) A set $C \subseteq \kappa$ is called a **club** if it is closed and unbounded.
- **2** A set $S \subseteq \kappa$ is called **stationary** if $S \cap C \neq \emptyset$, for every club $C \subseteq \kappa$.

Fact: For every club $C \subseteq \kappa$ there is a club $D \subseteq C$ such that for each $\alpha \in D$, $C \cap \alpha$ is a club.

Informally speaking, club sets reflect.

Question (naive version):

Do stationary sets reflect?

• A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \aleph_0$ such that $S \cap \alpha$ is stationary in α .

- A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \aleph_0$ such that $S \cap \alpha$ is stationary in α .
- **②** For a given stationary set $S \subseteq \kappa$, the principle $\operatorname{Refl}(S)$ asserts that every stationary subset $T \subseteq S$ reflects.

- A stationary set $S \subseteq \kappa$ reflects if there is $\alpha < \kappa$ with $cf(\alpha) > \aleph_0$ such that $S \cap \alpha$ is stationary in α .
- **②** For a given stationary set S ⊆ κ, the principle Refl(S) asserts that every stationary subset T ⊆ S reflects.

Question

For which cardinals κ and stationaries $S \subseteq \kappa$ does $\operatorname{Refl}(S)$ hold?

- A stationary set S ⊆ κ reflects if there is α < κ with cf(α) > ℵ₀ such that S ∩ α is stationary in α.
- **②** For a given stationary set S ⊆ κ, the principle Refl(S) asserts that every stationary subset T ⊆ S reflects.

Question

For which cardinals κ and stationaries $S \subseteq \kappa$ does $\operatorname{Refl}(S)$ hold?

We need to separate the discussion into three cases:

Theorem (Tarski (?), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L, this is an equivalence.

Theorem (Tarski (?), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L, this is an equivalence.

2 Successor of a regular: Set $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$.

Theorem (Tarski (?), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L, this is an equivalence.

2 Successor of a regular: Set $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$.

$\operatorname{Refl}(\kappa)$ fails

Actually
$$\operatorname{Refl}(E_{\lambda}^{\kappa})$$
 fails, where $E_{\lambda}^{\kappa} = \{\alpha < \kappa \mid \operatorname{cf}(\alpha) = \lambda\}.$

Theorem (Tarski (?), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L, this is an equivalence.

2 Successor of a regular: Set $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$.

$\operatorname{Refl}(\kappa)$ fails

Actually $\operatorname{Refl}(E_{\lambda}^{\kappa})$ fails, where $E_{\lambda}^{\kappa} = \{\alpha < \kappa \mid \operatorname{cf}(\alpha) = \lambda\}$. Indeed, let $\alpha < \kappa$ be with $\operatorname{cf}(\alpha) > \aleph_0$ and $C \subseteq \alpha$ be a club of points of cofinality $<\lambda$. Clearly, $C \cap E_{\lambda}^{\kappa} = \emptyset$, and so $E_{\lambda}^{\kappa} \cap \alpha$ is not stationary.

Theorem (Tarski (?), Jensen (1972))

If κ is weakly compact then $\operatorname{Refl}(\kappa)$ holds. Under V = L, this is an equivalence.

2 Successor of a regular: Set $\kappa := \lambda^+$, with $\lambda = cf(\lambda)$.

$\operatorname{Refl}(\kappa)$ fails

Actually $\operatorname{Refl}(E_{\lambda}^{\kappa})$ fails, where $E_{\lambda}^{\kappa} = \{\alpha < \kappa \mid \operatorname{cf}(\alpha) = \lambda\}$. Indeed, let $\alpha < \kappa$ be with $\operatorname{cf}(\alpha) > \aleph_0$ and $C \subseteq \alpha$ be a club of points of cofinality $<\lambda$. Clearly, $C \cap E_{\lambda}^{\kappa} = \emptyset$, and so $E_{\lambda}^{\kappa} \cap \alpha$ is not stationary.

Despite of this we can still obtain an optimal reflection pattern:

Theorem (Harrington & Shelah) (NDJFL - 1985)

The following are equiconsistent:

- There is a Mahlo cardinal.
- ▶ $\operatorname{Refl}(E_{<\lambda}^{\kappa})$ holds.

Successors of a singular:

Unlike of successors of regulars now one can arrange full reflection:

Theorem (Magidor) (JSL–1982)

Assume there are ω -many supercompact cardinals and that the GCH holds. Then there is a generic extension where $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

Successors of a singular:

Unlike of successors of regulars now one can arrange full reflection:

Theorem (Magidor) (JSL–1982)

Assume there are ω -many supercompact cardinals and that the GCH holds. Then there is a generic extension where $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

This strong large-cardinal assumptions do not appear by chance.

Definition (Jensen)

Let κ be an infinite cardinal. A sequence $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$ is called a \Box_{κ} -sequence if the following are true for each $\alpha < \kappa^+$:

- $C_{\alpha} \subseteq \alpha$ is a club set;
- 2 if $cf(\alpha) < \kappa$ then $otp(C_{\alpha}) < \kappa$;
- **3** for all $\beta \in \lim(C_{\alpha})$, $C_{\alpha} \cap \beta = C_{\beta}$.

We say that \Box_{κ} holds if there is a \Box_{κ} -sequence.
Definition (Jensen)

Let κ be an infinite cardinal. A sequence $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$ is called a \Box_{κ} -sequence if the following are true for each $\alpha < \kappa^+$:

- $C_{\alpha} \subseteq \alpha$ is a club set;
- 2 if $cf(\alpha) < \kappa$ then $otp(C_{\alpha}) < \kappa$;
- (a) for all $\beta \in \lim(C_{\alpha})$, $C_{\alpha} \cap \beta = C_{\beta}$.

We say that \Box_{κ} holds if there is a \Box_{κ} -sequence.

-sequences are prototypical manifestations of incompactness

If \Box_{κ} holds then there is no club $C \subseteq \kappa^+$ threading $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle$. In other words, there is no club set $C \subseteq \kappa^+$ that may continue the \Box_{κ} -sequence.

• \Box_{κ} is **incompatible** with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.

- \Box_{κ} is **incompatible** with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.
- **2** Avoiding \Box_{κ} is hard and costly, and thus so is getting $\operatorname{Refl}(\kappa^+)$:

- \Box_{κ} is incompatible with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.
- Avoiding \Box_{κ} is hard and costly, and thus so is getting $\operatorname{Refl}(\kappa^+)$: (\aleph) Why is it hard?
 - If W is L-like, then $W \models "\forall \kappa \ge \aleph_0 \square_{\kappa}$ ".
 - If W is L-like and W resembles sufficiently V, then \Box_{κ} holds.

- \Box_{κ} is incompatible with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.
- Avoiding □_κ is hard and costly, and thus so is getting Refl(κ⁺):
 (ℵ) Why is it hard?
 - If W is L-like, then $W \models "\forall \kappa \geq \aleph_0 \square_{\kappa}$ ".
 - If W is L-like and W resembles sufficiently V, then \Box_{κ} holds.

(**D**) Why is it costly? The failure of square yields inner models with large cardinals (e.g., if \Box_{ω_1} fails then \aleph_2 is Mahlo in *L*)

- \Box_{κ} is **incompatible** with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.
- Avoiding □_κ is hard and costly, and thus so is getting Refl(κ⁺):
 (ℵ) Why is it hard?
 - If W is L-like, then $W \models "\forall \kappa \geq \aleph_0 \square_{\kappa}$ ".
 - If W is L-like and W resembles sufficiently V, then \Box_{κ} holds.
 - (**D**) Why is it costly? The failure of square yields inner models with large cardinals

(e.g., if \Box_{ω_1} fails then \aleph_2 is Mahlo in L)

This is even more dramatic when the relevant cardinal is singular:

(e.g., if \Box_{κ} fails then there is an inner model with ∞ -many Woodin cardinals)

- \Box_{κ} is **incompatible** with $\operatorname{Refl}(\kappa^+)$. Specifically, if \Box_{κ} holds then $\operatorname{Refl}(S)$ fails, for every stationary set $S \subseteq \kappa^+$.
- Avoiding □_κ is hard and costly, and thus so is getting Refl(κ⁺):
 (ℵ) Why is it hard?
 - If W is L-like, then $W \models "\forall \kappa \ge \aleph_0 \square_{\kappa}$ ".
 - If W is L-like and W resembles sufficiently V, then \Box_{κ} holds.

(**D**) Why is it costly? The failure of square yields inner models with large cardinals

(e.g., if \Box_{ω_1} fails then \aleph_2 is Mahlo in L)

This is even more dramatic when the relevant cardinal is singular:

(e.g., if \Box_{κ} fails then there is an inner model with ∞ -many Woodin cardinals)

Arranging $\operatorname{Refl}(\kappa^+)$ is always **hard** and **costly**. Specially if κ is singular.

The Singular Cardinal Hypothesis

Theorem (Easton)

Assume the GCH holds. For every pair of regular cardinals $\kappa<\lambda$ there is a generic extension where ${\rm GCH}_{<\kappa}$ holds and $2^\kappa=\lambda$

Theorem (Easton)

Assume the GCH holds. For every pair of regular cardinals $\kappa<\lambda$ there is a generic extension where ${\rm GCH}_{<\kappa}$ holds and $2^\kappa=\lambda$

The situation is much more restrictive for singulars:

Theorem (Easton)

Assume the GCH holds. For every pair of regular cardinals $\kappa<\lambda$ there is a generic extension where ${\rm GCH}_{<\kappa}$ holds and $2^\kappa=\lambda$

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver's compactness theorem

For every singular κ of **uncountable cofinality** if $GCH_{<\kappa}$ holds then GCH_{κ} also does.

Theorem (Easton)

Assume the GCH holds. For every pair of regular cardinals $\kappa<\lambda$ there is a generic extension where ${\rm GCH}_{<\kappa}$ holds and $2^\kappa=\lambda$

The situation is much more restrictive for singulars:

Theorem (Silver) - Silver's compactness theorem

For every singular κ of **uncountable cofinality** if $GCH_{<\kappa}$ holds then GCH_{κ} also does.

Question

Does Silver's theorem extends for singular cardinals of countable cofinality?

The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Question

Is the failure of the SCH consistent with ZFC?

The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Question

() Is the failure of the SCH consistent with ZFC? (\checkmark)

¬SCH is consistent modulo the existence of a κ⁺⁺-supercompact cardinal κ. (Silver & Prikry)

The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Question

- **(**) Is the failure of the SCH consistent with ZFC? (\checkmark)
- Which is (consistently) the first witness for ¬SCH?
- ¬SCH is consistent modulo the existence of a κ⁺⁺-supercompact cardinal κ.
 (Silver & Prikry)

By Silver's it cannot be \aleph_{ω_1} , but could it be \aleph_{ω} ?

The Singular Cardinal Hypothesis (SCH) is the assertion that for every singular strong limit cardinal κ , $2^{\kappa} = \kappa^+$ (i.e., SCH_{κ} holds).

Question

- **(**) Is the failure of the SCH consistent with ZFC? (\checkmark)
- Which is (consistently) the first witness for ¬SCH?
- ¬SCH is consistent modulo the existence of a κ⁺⁺-supercompact cardinal κ.
 (Silver & Prikry)

By Silver's it cannot be \aleph_{ω_1} , but could it be \aleph_{ω} ?

Yes

Theorem (Magidor) (Ann. Math -1977)

Assume there is a supercompact cardinal along with a huge cardinal on top. Then there is a generic extension where $GCH_{<\aleph_{\omega}}$ holds but $SCH_{\aleph_{\omega}}$ fails.

Theorem (Magidor) (Ann. Math –1977)

Assume there is a supercompact cardinal along with a huge cardinal on top. Then there is a generic extension where $\text{GCH}_{<\aleph_{\omega}}$ holds but $\text{SCH}_{\aleph_{\omega}}$ fails.

Theorem (Gitik, Woodin) (Optimal assumptions)

If there exists a measurable cardinal κ with Mitchell order κ^{++} , then there is a generic extension where $\operatorname{GCH}_{<\aleph_{\omega}}$ holds but $\operatorname{SCH}_{\aleph_{\omega}}$ fails.

There is tension between $\neg \mathsf{SCH}_{\kappa}$ and $\operatorname{Refl}(\kappa^+)$

► Getting ¬SCH usually involves singularizing cardinals;

- Getting ¬SCH usually involves singularizing cardinals;
- Singularizing typically yields weak forms of square, which are at odds with reflection.

Theorem (Gitik - Džamonja & Shelah)

Suppose $V \subseteq W$ are two inner models where a cardinal κ is a V-inaccessible but W-singular with $\mathrm{cf}^W(\kappa) = \omega$. If moreover $(\kappa^+)^V = (\kappa^+)^W$ then $W \models \Box_{\kappa,\omega}$.

- Getting ¬SCH usually involves singularizing cardinals;
- Singularizing typically yields weak forms of square, which are at odds with reflection.

Theorem (Gitik - Džamonja & Shelah)

Suppose $V \subseteq W$ are two inner models where a cardinal κ is a V-inaccessible but W-singular with $\mathrm{cf}^W(\kappa) = \omega$. If moreover $(\kappa^+)^V = (\kappa^+)^W$ then $W \models \Box_{\kappa,\omega}$.

It is both hard and costly to arrange $\operatorname{Refl}(\kappa^+)$ along with $\neg \mathsf{SCH}_{\kappa}$.

Σ -Prikry forcings and their iterations

"Is hard to manipulate the combinatorics of singulars", yet again

There are essentially two sorts of obstacles when dealing with singular cardinals:

9 Foundational: Almost any manipulation requires very large-cardinals.

e.g.,
$$\neg \mathsf{SCH}_{\kappa}$$
 requires $o(\kappa) = \kappa^{++}$ (Gitik & Woodin)
and $\neg \Box_{\kappa}$ implies $\mathrm{AD}^{L(\mathbb{R})}$ (Steel)

9 Foundational: Almost any manipulation requires very large-cardinals.

e.g.,
$$\neg \mathsf{SCH}_{\kappa}$$
 requires $o(\kappa) = \kappa^{++}$ (Gitik & Woodin)
and $\neg \Box_{\kappa}$ implies $\mathrm{AD}^{L(\mathbb{R})}$ (Steel)

② Technical: Lack of iteration theorems at the level of singular cardinals.

9 Foundational: Almost any manipulation requires very large-cardinals.

e.g.,
$$\neg \mathsf{SCH}_{\kappa}$$
 requires $o(\kappa) = \kappa^{++}$ (Gitik & Woodin)
and $\neg \Box_{\kappa}$ implies $\mathrm{AD}^{L(\mathbb{R})}$ (Steel)

Orechnical: Lack of iteration theorems at the level of singular cardinals.

Iteration Theorem

Every $\kappa^{++}\text{-length}$ and $\kappa\text{-supported}$ iteration of $\kappa^{++}\text{-cc}$ forcing is again $\kappa^{++}\text{-cc}.$

9 Foundational: Almost any manipulation requires very large-cardinals.

e.g.,
$$\neg \mathsf{SCH}_{\kappa}$$
 requires $o(\kappa) = \kappa^{++}$ (Gitik & Woodin)
and $\neg \Box_{\kappa}$ implies $\mathrm{AD}^{L(\mathbb{R})}$ (Steel)

Orechnical: Lack of iteration theorems at the level of singular cardinals.

Iteration Theorem

Every κ^{++} -length and κ -supported iteration of κ^{++} -cc forcing is again κ^{++} -cc.

Goal

Prove an iteration theorem for singular cardinals and apply it to combine $Refl(\kappa^+)$ with $\neg SCH_{\kappa}$.

Iteration Theorem

Every κ^{++} -length and κ -supported iteration of κ^{++} -cc forcing has the κ^{++} -cc.

Obstacle

Some additional properties over the forcings are required. A crucial one is κ -closedness, which is not prevalent enough when κ is singular.

Iteration Theorem

Every κ^{++} -length and κ -supported iteration of κ^{++} -cc forcing has the κ^{++} -cc.

Obstacle

Some additional properties over the forcings are required. A crucial one is κ -closedness, which is not prevalent enough when κ is singular.

Shooting a club trough a stationary subset

Let κ with $cf(\kappa) = \omega$ and $S \subseteq E_{\omega}^{\kappa^+}$ stationary. Then the typical forcing using bounded closed sets is not even \aleph_1 -closed!

Iteration Theorem

Every κ^{++} -length and κ -supported iteration of κ^{++} -cc forcing has the κ^{++} -cc.

Obstacle

Some additional properties over the forcings are required. A crucial one is κ -closedness, which is not prevalent enough when κ is singular.

Shooting a club trough a stationary subset

Let κ with $cf(\kappa) = \omega$ and $S \subseteq E_{\omega}^{\kappa^+}$ stationary. Then the typical forcing using bounded closed sets is not even \aleph_1 -closed!

Shortage of iteration theorems when κ singular

Is there any hope to succeed without κ -closedness?

Is there any hope to succeed without κ -closedness?

An alternative: The Prikry workaround

Look at forcings \mathbb{P} which have the Prikry property and are "layered-closed":

- \blacksquare $\mathbb P$ can be written as $\bigcup_{n<\omega}\mathbb P_n$, according to some reasonable notion of length.
- **②** The layers \mathbb{P}_n are "eventually as closed as necessary".

Is there any hope to succeed without κ -closedness?

An alternative: The Prikry workaround

Look at forcings \mathbb{P} which have the Prikry property and are "layered-closed":

- $\label{eq:product} {\rm I} {\rm P} {\rm \ can \ be \ written \ as \ } \bigcup_{n < \omega} {\rm I} {\rm P}_n {\rm , \ according \ to \ some \ reasonable \ notion \ of \ length} .$
- **②** The layers \mathbb{P}_n are "eventually as closed as necessary".

Example: Prikry forcing

Let ${\rm I\!P}$ be Prikry forcing. Then,

2 \mathbb{P}_n is κ -directed closed.

Is there any hope to succeed without κ -closedness?

An alternative: The Prikry workaround

Look at forcings ${\mathbb P}$ which have the Prikry property and are "layered-closed":

- \blacksquare $\mathbb P$ can be written as $\bigcup_{n<\omega}\mathbb P_n$, according to some reasonable notion of length.
- **②** The layers \mathbb{P}_n are "eventually as closed as necessary".

Example: Prikry forcing

Let ${\rm I\!P}$ be Prikry forcing. Then,

2 \mathbb{P}_n is κ -directed closed.

Revised Strategy

Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc **Prikry-type forcings**.
(e.g., Magidor's proof of the Identity crises phenomenon)

(e.g., Magidor's proof of the Identity crises phenomenon)

As a result, two crucial features of these iterations are:

The chain condition of the iterates grows progressively.

② The degree "layer-closedness" of the iterates increases along the iteration.

(e.g., Magidor's proof of the Identity crises phenomenon)

As a result, two crucial features of these iterations are:

The chain condition of the iterates grows progressively.

We want to keep the same chain condition

The degree "layer-closedness" of the iterates increases along the iteration.
We want to maintain the degree of "layered-closedness"

(e.g., Magidor's proof of the Identity crises phenomenon)

As a result, two crucial features of these iterations are:

The chain condition of the iterates grows progressively.

We want to keep the same chain condition

The degree "layer-closedness" of the iterates increases along the iteration. We want to maintain the degree of "layered-closedness"

Comparing both schemata

Magidor & Gitik iterations \cong Easton-style iteration to force $\neg \text{GCH}_{\kappa}$ at a supercompact κ Our iterations \cong Forcing iteration to obtain $\text{FA}_{2\kappa^+}(\Gamma)$, for κ singular

Σ -Prikry forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

$\Sigma\text{-}\mathsf{Prikry}$ forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

 $\ \, {\bf 0} \ \, \ell \colon P \to \omega \ \, {\rm is \ a \ \ 'canonical \ \, notion \ of \ \, length''; }$

Σ -Prikry forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

 $c: P \to \mu$ witnesses a strong form of μ^+ -Linkness, where $1 \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

 $c(p) = c(q) \Longrightarrow P_0^p \cap P_0^q \neq \emptyset.$

$\Sigma\text{-}\mathsf{Prikry}$ forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A $\Sigma\text{-}\mathsf{Prikry}$ poset is a triple (\mathbb{P},ℓ,c) such that:

- $\ \ \, \bullet \ \ \, !:P\rightarrow\omega \ \ \, \mbox{is a ``canonical notion of length'';}$
- **2** $c: P \to \mu$ witnesses a strong form of μ^+ -Linkness, where $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

$$c(p) = c(q) \Longrightarrow P_0^p \cap P_0^q \neq \emptyset.$$

- \bigcirc \mathbb{P} is a forcing poset such that:
 - For each $n < \omega$, \mathbb{P}_n is κ_n -directed-closed;
 - P has the Complete Prikry Property.

Σ -Prikry forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

• $\ell \colon P \to \omega$ is a "canonical notion of length";

2 $c: P \to \mu$ witnesses a strong form of μ^+ -Linkness, where $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

$$c(p) = c(q) \Longrightarrow P_0^p \cap P_0^q \neq \emptyset.$$

- \bigcirc \mathbb{P} is a forcing poset such that:
 - For each $n < \omega$, \mathbb{P}_n is κ_n -directed-closed;
 - \blacktriangleright \mathbb{P} has the **Complete Prikry Property**.

Prikry forcing

$$\Sigma := \langle \kappa \rangle, \ \ell(s, A) := |s|, \ c(s, A) := s, \ \mu = (\kappa^+)^V.$$

Σ -Prikry forcings in a nutshell

 $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is non-decreasing seq. of regular uncountable cardinals. Set $\kappa := \sup(\Sigma)$.

A Σ -Prikry poset is a triple (\mathbb{P}, ℓ, c) such that:

• $\ell \colon P \to \omega$ is a "canonical notion of length";

2 $c: P \to \mu$ witnesses a strong form of μ^+ -Linkness, where $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \check{\kappa}^+$.

$$c(p) = c(q) \Longrightarrow P_0^p \cap P_0^q \neq \emptyset.$$

- \bigcirc \mathbb{P} is a forcing poset such that:
 - For each $n < \omega$, \mathbb{P}_n is κ_n -directed-closed;
 - \blacktriangleright \mathbb{P} has the **Complete Prikry Property**.

Prikry forcing

$$\Sigma := \langle \kappa \rangle, \ \ell(s, A) := |s|, \ c(s, A) := s, \ \mu = (\kappa^+)^V.$$

The class of Σ -Prikry forcing is quite broad

(e.g., Gitik-Sharon, Extender Based Prikry, etc).

Set up

- Let Σ := ⟨κ_n | n < ω⟩ be strictly increasing, where each κ_n is Laver indestructible supercompact. Set κ := sup(Σ);
- ② Let 𝒫 be the Extender-Based Prikry forcing with respect to $\mathcal{E} = \langle E_n \mid n < \omega \rangle$, where E_n is a $(\kappa_n, \kappa^{++} + 1)$ -extender;
- Solution $2^{2^{\kappa}} = \kappa^{++}$, we fix a bookkeeping function $\psi: \kappa^{++} \to H_{\kappa^{++}}$.

Proposition (P., Rinot & Sinapova - (2020))

Let \mathbb{Q} be a Σ -Prikry forcing not collapsing κ^+ . Then $V^{\mathbb{Q}} \models \operatorname{Refl}(\langle \omega, \kappa^+ \cap \operatorname{cf}^V(\rangle \omega))$.

Proposition (P., Rinot & Sinapova - (2020))

Let \mathbb{Q} be a Σ -Prikry forcing not collapsing κ^+ . Then $V^{\mathbb{Q}} \models \operatorname{Refl}(\langle \omega, \kappa^+ \cap \operatorname{cf}^V(\rangle \omega))$.

Strategy

Define a forcing iteration $\mathbb{P}_{\kappa^{++}}$ such that

$${\small \bigcirc} \ {\mathbb P}_{\kappa^{++}} \text{ is } \Sigma\text{-}{\mathsf{Prikry}} \text{ and does not collapse } \kappa^+$$

$$V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^{+} \cap \operatorname{cf}^{V}(\omega)),$$

3 $\mathbb{P}_{\kappa^{++}}$ projects to \mathbb{P} .

Provided $\mathbb{P}_{\kappa^{++}}$ fulfills the above conditions it yields the desired generic extension.

Let \mathbb{Q} be a Σ -Prikry forcing and a problem $\sigma \in V^{\mathbb{Q}}$. We want a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ .

Let \mathbb{Q} be a Σ -Prikry forcing and a problem $\sigma \in V^{\mathbb{Q}}$. We want a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ .

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot, \cdot)$ such that **Q** $\mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma)$, "solves the problem raised by σ "

Let \mathbb{Q} be a Σ -Prikry forcing and a problem $\sigma \in V^{\mathbb{Q}}$. We want a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ .

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot,\cdot)$ such that

Q $\mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma)$, "solves the problem raised by σ "

and for which there are maps (π, \pitchfork) such that:

- **()** There is a projection π between $\mathbb A$ and $\mathbb Q$
- ② There is a canonical operation \pitchfork to move from ${\mathbb Q}$ to ${\mathbb A}$, which coheres with π

Let \mathbb{Q} be a Σ -Prikry forcing and a problem $\sigma \in V^{\mathbb{Q}}$. We want a Σ -Prikry forcing \mathbb{A} that projects onto \mathbb{Q} and settles the problem raised by σ .

The above is achieved by invoking a solving-problem functor $\mathbb{A}(\cdot,\cdot)$ such that

 $\bigcirc \ \mathbb{A} := \mathbb{A}(\mathbb{Q}, \sigma), \text{ "solves the problem raised by } \sigma"$

and for which there are maps (π, \pitchfork) such that:

- $\textcircled{\ } \bullet \ \ \textbf{There is a projection} \ \pi \ \textbf{between} \ \textbf{A} \ \textbf{and} \ \textbf{Q}$
- ② There is a canonical operation \pitchfork to move from ${\mathbb Q}$ to ${\mathbb A},$ which coheres with π

Upshot

Provided (1) & (2) of the above hold then \mathbb{A} is not so far from being Σ -Prikry.

The iteration scheme

• Set
$$\mathbb{P}_0 := (\{\emptyset\}, \leq)$$
 and $\mathbb{P}_1 := {}^1\mathbb{P};$

 $\ \ \, {\mathbb P}_{\alpha+1}: \ \ \, {\rm If} \ \psi(\alpha)=(\beta,r,\sigma) \ {\rm with} \ \beta<\alpha, \ r\in P_\beta, \ \sigma\in V^{\mathbb P_\beta} \ {\rm and} \ \ \,$

 $r \Vdash_{\mathbb{P}_{\beta}} \sigma$ is a non-reflecting stationary set of $\kappa^+ \cap \mathrm{cf}^V(\omega)$,

then $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \sigma)$, where $\mathbb{A}(\cdot, \cdot)$ is a functor that *destroys the stationarity of* σ .

The iteration scheme

then $\mathbb{P}_{\alpha+1} := \mathbb{A}(\mathbb{P}_{\alpha}, \sigma)$, where $\mathbb{A}(\cdot, \cdot)$ is a functor that *destroys the stationarity of* σ . **③** \mathbb{P}_{α} is the κ -supported inverse limit of $\langle \mathbb{P}_{\beta} | \beta < \alpha \rangle$.

Fact

Q $\mathbb{P}_{\kappa^{++}}$ is Σ -Prikry and does not collapse κ^+ .

Proof

• Corollary of our iteration theorem.

Fact

- $V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\omega)).$

Proof

- Corollary of our iteration theorem.
- **2** By the κ^{++} -cc of $\mathbb{P}_{\kappa^{++}}$ and the usual "catch our tail" argument.

Fact

- **Q** $\mathbb{P}_{\kappa^{++}}$ is Σ -Prikry and does not collapse κ^+ .
- $V^{\mathbb{P}_{\kappa^{++}}} \models \operatorname{Refl}(\kappa^+ \cap \operatorname{cf}^V(\omega)).$
- $\ \ \, \mathbb{P}_{\kappa^{++}} \ \, \text{projects to} \ \ \, \mathbb{P}.$

Proof

- Corollary of our iteration theorem.
- **2** By the κ^{++} -cc of $\mathbb{P}_{\kappa^{++}}$ and the usual "catch our tail" argument.
- Sessentially, by our assumption over the functors.

In recent joint work we have found a tweaking of Σ -Prikryness that encompasses forcings with interleaved collapses. A remarkable forcing captured by this framework is **Gitik's Extender Based Prikry forcing with interleaved collapses**.

In recent joint work we have found a tweaking of Σ -Prikryness that encompasses forcings with interleaved collapses. A remarkable forcing captured by this framework is **Gitik's Extender Based Prikry forcing with interleaved collapses**.

As an application of this new framework we prove the following:

In recent joint work we have found a tweaking of Σ -Prikryness that encompasses forcings with interleaved collapses. A remarkable forcing captured by this framework is **Gitik's Extender Based Prikry forcing with interleaved collapses**.

As an application of this new framework we prove the following:

Theorem (P., Rinot & Sinapova) (2020)

Assuming the consistency of infinitely many supercompact cardinals, it is consistent that all of the following hold:

GCH_{<\ki_\omega} holds.
2<sup>\ki_\omega</sub> = \ki_\omega+2, hence SCH_{\ki_\omega} fails.
Refl(\ki_\omega+1).
Magidor - JSL (1982)
</sup>

Thank you very much for your attention!