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1. What do category theorists do?



What do category theorists do?

• Internal work
Like any other subject, category theory has a constantly-developing
body of definitions, theorems and proofs that are mainly of interest to
category theorists.

I won’t talk about this.

• External work
We also put a lot of effort into trying to illuminate and connect together
other subjects:

I in mathematics: algebra, logic, topology, geometry, analysis, . . .
I outside mathematics: computer science, physics, biology, . . .



How do category theorists approach other subjects?

I’ll discuss two aspects of how we approach other subjects:

• Mathematical anthropology (Section 2 of this talk)

• Organizing into categories (Section 3 of this talk)

The rest of this talk is an explanation what I mean by these two things,
and how they apply to sets.



2. Mathematical anthropology



What is ‘mathematical anthropology’?

The mathematical anthropologist looks at a branch of mathematics and asks:

• What do the practitioners of the subject find important?
What do they talk about a lot?

• Why do they focus on that particular object, not something slightly
different?

• Is there any tension between what they say they do and what they
actually do? Between the grand narrative and the unglamorous detail?



What does a (categorical) mathematical anthropologist
hope to achieve?

• Make precise what’s so special about the central objects of a subject.

• Streamline: e.g. show that a tricky construction that appears to be
subject-specific is actually an instance of a general categorical
construction.

• Spot new analogies and formalize existing ones.
Categorical language is very good for this.

• Resolve tensions between concepts/narrative and execution/detail.

(I’m not claiming category theory can always achieve these things!)



When category theorists look at set theory
(done by set theorists). . .

. . . we see a deep body of work, with some connections to category theory:
e.g. topos-theoretic (sheaf-theoretic) approaches to forcing.

But I won’t talk about this.



The status of sets in ‘ordinary’ mathematics

• Mathemiticans use sets all the time.

• Mathematicians rarely make mistakes in what they do with sets.

• Almost no one can state ‘the’ (or any) axioms for set theory.

• So apparently: there is a reliable body of (perhaps subconscious)
principles that mathematicians use when manipulating sets.



More anthropology: sets in theory and practice

Axiomatic set theory à la ZFC Sets as used by ordinary
mathematicians

There are some things called sets Some typical sets: R, A5,
the set of measures on [0, 1],
solution-set of some PDE, . . .

Elements of sets are always sets Elements of sets need not be sets
(π ∈ R etc.)

Given sets X and Y , it always
makes sense to ask ‘is X ∈ Y ?’ Debatable

Tree structure of sets heavily used Almost never used

Axiom of foundation ‘There is a real number none of
whose elements are real numbers’:
both meaning and relevance debatable



3. Organizing into categories



The world of categories

categories

cats of algebras cats of spaces

toposes

cats of
sets



The world of categories

higher categories



Categories of sets

A categorical axiomatization of sets takes as the primitives:

• sets

• functions from one given set to another

• composition of functions.

There will be axioms (starting with the category axioms), expressing what’s
special about categories of sets.



Deriving the concept of element

A set T is terminal if for all sets X , there is exactly one function X −→ T .

Lemma Any two terminal sets are uniquely isomorphic.

Axiom There exists a terminal set.

Fix a terminal set, 1.

Write x ∈ X to mean x : 1 −→ X .

(Compare: ‘a sequence in X is a function N −→ X ’.)

Evaluation is composition:

1
x //

f (x)

88X
f //Y



Lawvere’s elementary theory of the category of sets (1964)

Informally stated, the axioms are:

1. Composition of functions is associative and has identities

2. There is a set with exactly one element

3. There is a set with no elements

4. A function is determined by its effect on elements

5. Given sets X and Y , one can form their cartesian product X × Y

6. Given sets X and Y , one can form the set of functions from X to Y

7. Given f : X −→ Y and y ∈ Y , one can form the inverse image f −1(y)

8. The subsets of a set X correspond to the functions from X to {0, 1}
9. The natural numbers form a set

10. Every surjection has a right inverse.



Example: the product axiom

Let X and Y be sets. A product of X and Y consists of a set X × Y and
functions

X
pr1←− X × Y

pr2−→ Y

with the following property: for all sets A and functions

X
f1←− A

f2−→ Y ,

there is exactly one function (f1, f2) : A −→ X × Y such that

pr1
(
(f1, f2)(a)

)
= f1(a), pr2

(
(f1, f2)(a)

)
= f2(a)

for all a ∈ A.

Axiom Every pair of sets has a product.



Beyond these axioms

Lawvere’s ten axioms (ETCS) have the same consistency strength as
bounded Zermelo with choice.

Myth Category theorists are particularly attached to weak set theories.

E.g. Lawvere: ‘it is important to investigate first-order strengthenings of our
axiom system.’

• Replacement has a natural categorical formulation in terms of
coproducts.

• ETCS+R is bi-interpretable with ZFC.


