How category theorists think about sets

Tom Leinster Edinburgh

Related paper: 'Rethinking set theory'

1. What do category theorists do?

What do category theorists do?

Internal work

Like any other subject, category theory has a constantly-developing body of definitions, theorems and proofs that are mainly of interest to category theorists.

I won't talk about this.

• External work

We also put a lot of effort into trying to illuminate and connect together other subjects:

▶ in mathematics: algebra, logic, topology, geometry, analysis, ...

outside mathematics: computer science, physics, biology, ...

How do category theorists approach other subjects?

I'll discuss two aspects of how we approach other subjects:

- Mathematical anthropology (Section 2 of this talk)
- Organizing into categories (Section 3 of this talk)

The rest of this talk is an explanation what I mean by these two things, and how they apply to sets.

2. Mathematical anthropology

What is 'mathematical anthropology'?

The mathematical anthropologist looks at a branch of mathematics and asks:

- What do the practitioners of the subject find important? What do they talk about a lot?
- Why do they focus on *that particular* object, not something slightly different?
- Is there any tension between what they *say* they do and what they *actually* do? Between the grand narrative and the unglamorous detail?

What does a (categorical) mathematical anthropologist hope to achieve?

- Make precise what's so special about the central objects of a subject.
- Streamline: e.g. show that a tricky construction that appears to be subject-specific is actually an instance of a general categorical construction.
- Spot new analogies and formalize existing ones. Categorical language is very good for this.
- Resolve tensions between concepts/narrative and execution/detail.

(I'm not claiming category theory can always achieve these things!)

When category theorists look at set theory (done by set theorists)...

... we see a deep body of work, with some connections to category theory: e.g. topos-theoretic (sheaf-theoretic) approaches to forcing.

But I won't talk about this.

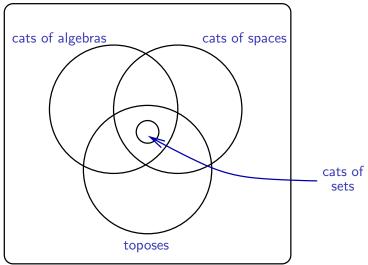
The status of sets in 'ordinary' mathematics

- Mathemiticans use sets all the time.
- Mathematicians rarely make mistakes in what they do with sets.
- Almost no one can state 'the' (or any) axioms for set theory.
- So apparently: there is a reliable body of (perhaps subconscious) principles that mathematicians use when manipulating sets.

More anthropology: sets in theory and practice	
Axiomatic set theory à la ZFC	Sets as used by ordinary mathematicians
There are some things called sets	Some typical sets: \mathbb{R} , A_5 , the set of measures on $[0, 1]$, solution-set of some PDE,
Elements of sets are always sets	Elements of sets need not be sets $(\pi \in \mathbb{R} ext{ etc.})$
Given sets X and Y, it always makes sense to ask 'is $X \in Y$?'	Debatable
Tree structure of sets heavily used	Almost never used
Axiom of foundation	'There is a real number none of whose elements are real numbers': both meaning and relevance debatable

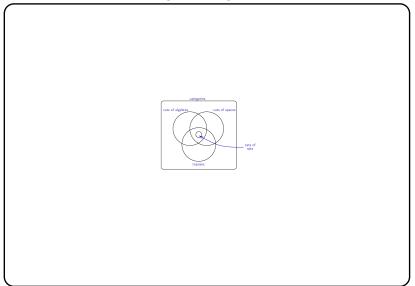
3. Organizing into categories

The world of categories



The world of categories

higher categories



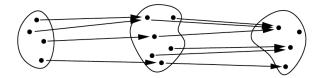
Categories of sets

A categorical axiomatization of sets takes as the primitives:

sets

- functions from one given set to another
- composition of functions.

There will be axioms (starting with the category axioms), expressing what's special about categories *of sets*.



Deriving the concept of element

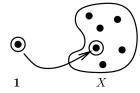
A set T is terminal if for all sets X, there is exactly one function $X \longrightarrow T$. Lemma Any two terminal sets are uniquely isomorphic.

Axiom There exists a terminal set.

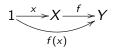
```
Fix a terminal set, 1.
```

Write $x \in X$ to mean $x: 1 \longrightarrow X$.

(Compare: 'a sequence in X is a function $\mathbb{N} \longrightarrow X'$.)



Evaluation is composition:



Lawvere's elementary theory of the category of sets (1964)

Informally stated, the axioms are:

- 1. Composition of functions is associative and has identities
- 2. There is a set with exactly one element
- 3. There is a set with no elements
- 4. A function is determined by its effect on elements
- 5. Given sets X and Y, one can form their cartesian product $X \times Y$
- 6. Given sets X and Y, one can form the set of functions from X to Y
- 7. Given $f: X \longrightarrow Y$ and $y \in Y$, one can form the inverse image $f^{-1}(y)$
- 8. The subsets of a set X correspond to the functions from X to $\{0,1\}$
- 9. The natural numbers form a set
- 10. Every surjection has a right inverse.

Example: the product axiom

Let X and Y be sets. A product of X and Y consists of a set $X \times Y$ and functions

$$X \xleftarrow{\mathsf{pr}_1} X \times Y \xrightarrow{\mathsf{pr}_2} Y$$

with the following property: for all sets A and functions

$$X \xleftarrow{f_1} A \xrightarrow{f_2} Y,$$

there is exactly one function $(f_1, f_2): A \longrightarrow X \times Y$ such that

$$\mathsf{pr}_1ig((f_1,f_2)(a)ig) = f_1(a), \qquad \mathsf{pr}_2ig((f_1,f_2)(a)ig) = f_2(a)$$

for all $a \in A$.

Axiom Every pair of sets has a product.

Beyond these axioms

- Lawvere's ten axioms (ETCS) have the same consistency strength as bounded Zermelo with choice.
- Myth Category theorists are particularly attached to weak set theories.
- E.g. Lawvere: 'it is important to investigate first-order strengthenings of our axiom system.'
 - Replacement has a natural categorical formulation in terms of coproducts.
 - ETCS+R is bi-interpretable with ZFC.