Bolzano-Weierstraß properties in generalised analysis

Benedikt Löwe

STUK 5: Set Theory in the United Kingdom Royal Society, London, England

11 February 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Joint work with:

Merlin Carl

Lorenzo Galeotti

Aymane Hanafi

M. Carl, L. Galeotti, B. Löwe, The Bolzano-Weierstraß theorem in generalised analysis, *Houston Journal of Mathematics* 44:4 (2018), 1081-1109.

L. Galeotti, A. Hanafi, B. Löwe, Bolzano-Weierstraß properties in generalised analysis, *in preparation.*

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem. Up to isomorphism, there is a unique complete ordered field.

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem. Up to isomorphism, there is a unique complete ordered field.

What do we mean by "complete"?

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem. Up to isomorphism, there is a unique complete ordered field.

What do we mean by "complete"?

Option 1. Dedekind complete.

Option 2. Cauchy complete.

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem. Up to isomorphism, there is a unique Dedekind complete ordered field.

What do we mean by "complete"?

Option 1. Dedekind complete.

Option 2. Cauchy complete.

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

Theorem. Up to isomorphism, there is a unique Dedekind complete ordered field.

What do we mean by "complete"?

Option 1. Dedekind complete.

Option 2. Cauchy complete.

[If K is Dedekind complete, then K is Archimedean: if not, then \mathbb{N} is bounded, thus has a supremum s, but s - 1 is a smaller upper bound. Contradiction!]

Let $(K, +, \cdot, 0, 1, \leq)$ be an ordered field. Note that $\mathbb{N} \subseteq K$ and thus $\mathbb{Q} \subseteq K$.

Theorem. Up to isomorphism, there is a unique Dedekind complete ordered field.

What do we mean by "complete"?

Option 1. Dedekind complete.

Option 2. Cauchy complete.

[If K is Dedekind complete, then K is Archimedean: if not, then \mathbb{N} is bounded, thus has a supremum s, but s - 1 is a smaller upper bound. Contradiction!]

Let $bn(K) := min\{\kappa; \text{ there is a descending sequence of length } \kappa$ converging to 0}. A field K is Archimedean if and only if $bn(K) = \aleph_0$.

What about Cauchy completeness?

What about Cauchy completeness?

Any ordered field K is dense in its Cauchy completion \overline{K} and so $\operatorname{bn}(K) = \operatorname{bn}(\overline{K})$. The Cauchy completion of any non-Archimedean field is a Cauchy complete non-Archimedean field.

Thus, the theorem is not true for Cauchy completeness.

What about Cauchy completeness?

Any ordered field K is dense in its Cauchy completion \overline{K} and so $\operatorname{bn}(K) = \operatorname{bn}(\overline{K})$. The Cauchy completion of any non-Archimedean field is a Cauchy complete non-Archimedean field.

Thus, the theorem is not true for Cauchy completeness.

Goal of generalised analysis: Fix an uncountable κ and find a field K with $\operatorname{bn}(K) = \kappa$ that is similar to the real numbers \mathbb{R} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We want: INTERMEDIATE VALUE THEOREM, EXTREME VALUE THEOREM, BOLZANO-WEIERSTRASS, HEINE-BOREL, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We want: INTERMEDIATE VALUE THEOREM, EXTREME VALUE THEOREM, BOLZANO-WEIERSTRASS, HEINE-BOREL, etc.

R. Sikorski. On an ordered algebraic field. *Sprawozdania z Posiedzeń Wydziału III Towarzystwo Naukowe Warszawskie Nauk Matematyczno-Fizycznych*, 41:69–96, 1948.

- 1. Start with κ ;
- 2. form κ - \mathbb{Z} ;
- 3. take the quotient field κ - \mathbb{Q} .

We want: INTERMEDIATE VALUE THEOREM, EXTREME VALUE THEOREM, BOLZANO-WEIERSTRASS, HEINE-BOREL, etc.

R. Sikorski. On an ordered algebraic field. Sprawozdania z Posiedzeń Wydziału III Towarzystwo Naukowe Warszawskie Nauk Matematyczno-Fizycznych, 41:69–96, 1948.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 1. Start with κ ;
- 2. form κ - \mathbb{Z} ;
- 3. take the quotient field κ - \mathbb{Q} .

Theorem (Sikorski). If κ is uncountable, then κ - \mathbb{Q} satisfies Bolzano-Weierstraß. In particular, it is Cauchy complete.

We want: INTERMEDIATE VALUE THEOREM, EXTREME VALUE THEOREM, BOLZANO-WEIERSTRASS, HEINE-BOREL, etc.

R. Sikorski. On an ordered algebraic field. Sprawozdania z Posiedzeń Wydziału III Towarzystwo Naukowe Warszawskie Nauk Matematyczno-Fizycznych, 41:69–96, 1948.

- 1. Start with κ ;
- 2. form κ - \mathbb{Z} ;
- 3. take the quotient field κ - \mathbb{Q} .

Theorem (Sikorski). If κ is uncountable, then κ - \mathbb{Q} satisfies Bolzano-Weierstraß. In particular, it is Cauchy complete.

Unfortunately, $\kappa\text{-}\mathbb{Q}$ does not satisfy the intermediate value theorem.

Definition. An ordered field K is called *saturated* if for any sets L, R with $|L|, |R| < \operatorname{bn}(K)$ such that L < R, there is an $x \in K$ such that L < x < R.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Definition. An ordered field K is called *saturated* if for any sets L, R with $|L|, |R| < \operatorname{bn}(K)$ such that L < R, there is an $x \in K$ such that L < x < R.

L. Galeotti. A candidate for the generalised real line. In: *Pursuit of the Universal*: Proceedings CiE 2016 (2016), 271–281.

1. Start with $No_{<\kappa}$, the field of surreal numbers with sequence representations of length $<\kappa$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. take the Cauchy completion \mathbb{R}_{κ} .

Definition. An ordered field K is called *saturated* if for any sets L, R with $|L|, |R| < \operatorname{bn}(K)$ such that L < R, there is an $x \in K$ such that L < x < R.

L. Galeotti. A candidate for the generalised real line. In: *Pursuit of the Universal*: Proceedings CiE 2016 (2016), 271–281.

- 1. Start with $No_{<\kappa}$, the field of surreal numbers with sequence representations of length $<\kappa$;
- 2. take the Cauchy completion \mathbb{R}_{κ} .

Theorem (Galeotti). The field \mathbb{R}_{κ} is saturated and satisfies the intermediate value theorem for κ -continuous functions.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Saturation & Bolzano-Weierstraß.

Theorem (CGHL). If K has base number κ and is saturated, then it does not satisfy Bolzano-Weierstraß.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (CGHL). If K has base number κ and is saturated, then it does not satisfy Bolzano-Weierstraß.

Definition. An ordered field K with base number κ is called *spherically complete* if for any $\lambda < \kappa$ and any family $(I_{\alpha}; \alpha < \lambda)$ of nested intervals, $\bigcap_{\alpha < \lambda} I_{\alpha} \neq \emptyset$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (CGHL). If K has base number κ and is saturated, then it does not satisfy Bolzano-Weierstraß.

Definition. An ordered field K with base number κ is called *spherically complete* if for any $\lambda < \kappa$ and any family $(I_{\alpha}; \alpha < \lambda)$ of nested intervals, $\bigcap_{\alpha < \lambda} I_{\alpha} \neq \emptyset$.

Theorem (GHL). If a spherically complete K has base number κ and satisfies Bolzano-Weierstraß, then κ is weakly compact.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Weakening Bolzano-Weierstraß (1).

A sequence s is totally bounded if for all $\varepsilon \in K^+$ there is $\beta_{\varepsilon} < \kappa$ such that for all $\beta < \kappa$ there is $\gamma < \beta_{\varepsilon}$ and $|s(\beta) - s(\gamma)| < \varepsilon$.

The sequence s is called *interval witnessed* if for every $\varepsilon \in K^+$ there is a family of size $< \kappa$ of intervals of length $< \varepsilon$ that covers almost all elements of s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Weakening Bolzano-Weierstraß (1).

A sequence s is totally bounded if for all $\varepsilon \in K^+$ there is $\beta_{\varepsilon} < \kappa$ such that for all $\beta < \kappa$ there is $\gamma < \beta_{\varepsilon}$ and $|s(\beta) - s(\gamma)| < \varepsilon$.

The sequence s is called *interval witnessed* if for every $\varepsilon \in K^+$ there is a family of size $< \kappa$ of intervals of length $< \varepsilon$ that covers almost all elements of s.

Weakening Bolzano-Weierstraß (2).

Both Keisler-Schmerl and Sikorski imply that the field is Cauchy complete (since every Cauchy sequence is totally bounded).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Weakening Bolzano-Weierstraß (2).

Both Keisler-Schmerl and Sikorski imply that the field is Cauchy complete (since every Cauchy sequence is totally bounded).

Lemma (GHL). The weak Bolzano-Weierstraß property is preserved by thinning out the field: if K lies cofinal in L and L has the weak Bolzano-Weierstraß property, then so does K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Weakening Bolzano-Weierstraß (2).

Both Keisler-Schmerl and Sikorski imply that the field is Cauchy complete (since every Cauchy sequence is totally bounded).

Lemma (GHL). The weak Bolzano-Weierstraß property is preserved by thinning out the field: if K lies cofinal in L and L has the weak Bolzano-Weierstraß property, then so does K.

Theorem (GHL). For an ordered field K, the following are equivalent:

1. *K* is Cauchy complete and has the weak Bolzano-Weierstraß property and

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2. K has the Keisler-Schmerl property.

Weak Bolzano-Weierstraß & the tree property.

Theorem (CGHL). Let κ be uncountable and K be a spherically complete ordered field of base number κ . Then the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. K has the weak Bolzano-Weierstraß property and
- 2. κ has the tree property.