The Open Dihypergraph Dichotomy for Definable Subsets of Generalized Baire Spaces

Dorottya Sziráki

joint work with Philipp Schlicht

MTA Rényi Institute

CLMPST 2019

Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of ${}^\kappa\kappa$

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \qquad \text{where } s \in {}^{<\kappa}\kappa.$$

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

 $\Sigma_1^1(\kappa)$ sets: continuous images of κ -Borel sets; equivalently: continuous images of closed sets.

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$. A graph G on X is an open graph if it is an open subset of $X \times X$.

 $\mathrm{OGD}_{\kappa}(X)$

If G is an open graph on X, then either

• G has a κ -coloring (i.e., X is the union of κ many G-independent sets),

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$. A graph G on X is an open graph if it is an open subset of $X \times X$.

 $OGD_{\kappa}(X)$

If G is an open graph on X, then either

- G has a κ -coloring (i.e., X is the union of κ many G-independent sets),
- or G includes a κ -perfect complete subgraph,

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$. A graph G on X is an open graph if it is an open subset of $X \times X$.

$OGD_{\kappa}(X)$

If G is an open graph on X, then either

- G has a κ -coloring (i.e., X is the union of κ many G-independent sets),
- or G includes a κ -perfect complete subgraph, (i.e., there is a continuous injection $f : {}^{\kappa}2 \to X$ such that $(f(x), f(y)) \in G$ for all distinct $x, y \in {}^{\kappa}2$.)

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$. A graph G on X is an open graph if it is an open subset of $X \times X$.

$OGD_{\kappa}(X)$

If G is an open graph on X, then either

- G has a κ -coloring (i.e., X is the union of κ many G-independent sets),
- or G includes a κ -perfect complete subgraph, (i.e., there is a continuous injection $f : {}^{\kappa}2 \to X$ such that $(f(x), f(y)) \in G$ for all distinct $x, y \in {}^{\kappa}2$.)

 $OGA_{\kappa}(X)$

If G is an open graph on X, then either

- G has a κ-coloring,
- or G includes a complete subgraph of size κ^+ .

Theorem (Feng, 1993)

• OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.

Theorem (Feng, 1993)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- In Col(ω, <λ)-generic extensions, where λ is inaccessible, OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Theorem (Feng, 1993)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- In Col(ω, <λ)-generic extensions, where λ is inaccessible, OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Feng, 1993)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- In Col(ω, <λ)-generic extensions, where λ is inaccessible, OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz., 2018)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

Theorem (Feng, 1993)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- In Col(ω, <λ)-generic extensions, where λ is inaccessible, OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz., 2018)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

These results give the exact consistency strength of these statements.

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

If H is a $\delta\text{-dimensional box-open dihypergraph on }X$ then either

• H has a κ -coloring, or

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

If H is a δ -dimensional box-open dihypergraph on X then either

H has a κ-coloring, or

• there exists a continuous map $f:{}^\kappa\delta\to X$ which is a homomorphism from \mathbb{H}_δ to H

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

If H is a δ -dimensional box-open dihypergraph on X then either

- H has a κ-coloring, or
- there exists a continuous map $f : {}^{\kappa}\delta \to X$ which is a homomorphism from \mathbb{H}_{δ} to H (i.e. $f^{\delta}(\mathbb{H}_{\delta}) \subseteq H$),

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

If H is a δ -dimensional box-open dihypergraph on X then either

- H has a κ-coloring, or
- there exists a continuous map $f : {}^{\kappa}\delta \to X$ which is a homomorphism from \mathbb{H}_{δ} to H (i.e. $f^{\delta}(\mathbb{H}_{\delta}) \subseteq H$), where

$$\mathbb{H}_{\delta} = \{ \overline{x} \in {}^{\delta}({}^{\kappa}\delta) : (\exists t \in {}^{<\kappa}\delta)(\forall \alpha < \delta) t^{\frown} \langle \alpha \rangle \subset x_{\alpha} \}.$$

Introduced in the $\kappa = \omega$ case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 < \delta \le \kappa$. A δ -dimensional dihypergraph is a set $H \subseteq {}^{\delta}X$ of non-constant sequences.

H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

If H is a $\delta\text{-dimensional box-open dihypergraph on }X$ then either

- H has a κ-coloring, or
- there exists a continuous map $f : {}^{\kappa}\delta \to X$ which is a homomorphism from \mathbb{H}_{δ} to H (i.e. $f^{\delta}(\mathbb{H}_{\delta}) \subseteq H$), where

$$\mathbb{H}_{\delta} = \{ \overline{x} \in {}^{\delta}({}^{\kappa}\delta) : (\exists t \in {}^{<\kappa}\delta)(\forall \alpha < \delta) t^{\frown}\langle \alpha \rangle \subset x_{\alpha} \}.$$

 $OGD^2_{\kappa}(X)$ implies the open graph dichotomy $OGD_{\kappa}(X)$.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) OGD $_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

 X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).
- A theorem of Lecomte and Zeleny holds for X, which characterizes when a graph on X has Δ⁰₂-measurable ℵ₀-coloring.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).
- A theorem of Lecomte and Zeleny holds for X, which characterizes when a graph on X has Δ₂⁰-measurable ℵ₀-coloring.
- Several other applications . . .

$OGD_{\kappa}^{\delta}(X)$ for definable subsets of $\kappa \kappa$

Theorem (Schlicht, Sz., 2019)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

• OGD
$$^{\delta}_{\kappa}(X)$$
, where $2 \leq \delta < \kappa$.

Theorem (Schlicht, Sz., 2019)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

- OGD $^{\delta}_{\kappa}(X)$, where $2 \leq \delta < \kappa$.
- OGD^κ_κ(X) restricted to the family of those κ-dimensional box-open dihypergraphs H on X which are definable from an element of ^κOrd.

Theorem (Schlicht, Sz., 2019)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

- OGD $^{\delta}_{\kappa}(X)$, where $2 \leq \delta < \kappa$.
- OGD^κ_κ(X) restricted to the family of those κ-dimensional box-open dihypergraphs H on X which are definable from an element of ^κOrd.

This theorem gives the exact consistency strength of these statements.

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V.

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$.

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

• $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

• $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$

• R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a, b \in V$.

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a, b \in V$.

 $X - \bigcup \{ [T] : T \in V \text{ is a subtree of } ^{<\kappa}\kappa, [T] \text{ is } R \text{-independent} \}.$

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a, b \in V$.

Let $x \in X - \bigcup \{ [T] : T \in V \text{ is a subtree of } {}^{<\kappa}\kappa, [T] \text{ is } R\text{-independent} \}.$

Let $\lambda > \kappa$ be inaccessible, and let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \leq \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x,a)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a, b \in V$.

Let $x \in X - \bigcup \{ [T] : T \in V \text{ is a subtree of } <\kappa, [T] \text{ is } R\text{-independent} \}.$ Then $x \in V[G_{\alpha}]$ for some $\alpha < \lambda$. Let \dot{x} be a \mathbb{P}_{α} -name for x.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's.

These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's.

These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

We construct a \leq and \perp -preserving map $\iota : {}^{<\kappa}\delta \to \mathbb{P}_{\alpha}$ such that for all $y \in {}^{\kappa}\delta$,

 $g_y = \{q \in \mathbb{P}_{\alpha} : q \ge \iota(t) \text{ for some } t \subsetneq y\}$ is a \mathbb{P}_{α} -generic filter.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's.

These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

We construct a \leq and \perp -preserving map $\iota : {}^{<\kappa}\delta \to \mathbb{P}_{\alpha}$ such that for all $y \in {}^{\kappa}\delta$,

 $g_y = \{q \in \mathbb{P}_{\alpha} : q \ge \iota(t) \text{ for some } t \subsetneq y\}$ is a \mathbb{P}_{α} -generic filter.

By the next lemma, ι can be defined in such a way that $\dot{x}^{g_y} \in X$ for all $y \in {}^{\kappa}\delta$, and the (continuous) map

$$f: {}^{\kappa}\delta \to X; \ y \mapsto \dot{x}^{g_y}$$

is a homomorphism from \mathbb{H}_{δ} to H.

For any forcing $\mathbbm{Q},$ any $q\in Q$ and any $\mathbbm{Q}\text{-name }\sigma\text{,}$ define

$$T_{\mathbb{Q}}^{\sigma,q} = \{ t \in {}^{<\kappa}\kappa : (\exists r \leq q) \, r \Vdash_{\mathbb{Q}}^{V} t \subseteq \sigma \},$$

the tree of possible values for σ below q.

For any forcing $\mathbbm{Q},$ any $q\in Q$ and any $\mathbbm{Q}\text{-name }\sigma\text{,}$ define

$$T_{\mathbb{Q}}^{\sigma,q} = \{ t \in {}^{<\kappa}\kappa : (\exists r \le q) \, r \Vdash_{\mathbb{Q}}^{V} t \subseteq \sigma \},\$$

the tree of possible values for σ below q.

Lemma 2

There exists $p \in \mathbb{P}_{\alpha}$ such that the following hold.

• $p \Vdash_{\mathbb{P}_{\alpha}}^{V} \varphi_{X}(\dot{x}, a)$ holds in every further \mathbb{P}_{λ} -generic extension of $V[\dot{x}]$."

For any forcing $\mathbbm{Q},$ any $q\in Q$ and any $\mathbbm{Q}\text{-name }\sigma\text{,}$ define

$$T_{\mathbb{Q}}^{\sigma,q} = \{ t \in {}^{<\kappa}\kappa : (\exists r \le q) \, r \Vdash_{\mathbb{Q}}^{V} t \subseteq \sigma \},\$$

the tree of possible values for σ below q.

Lemma 2

There exists $p \in \mathbb{P}_{\alpha}$ such that the following hold.

- $p \Vdash_{\mathbb{P}_{\alpha}}^{V} \varphi_{X}(\dot{x}, a)$ holds in every further \mathbb{P}_{λ} -generic extension of $V[\dot{x}]$."
- 2 For all $r \in \mathbb{P}_{\alpha}$ below p, there exists (in V[G]) a sequence

$$\langle t_i \in T_{\mathbb{P}_\alpha}^{\dot{x},r}: i < \delta \rangle$$

such that (in V[G])

$$\prod_{i<\delta} N_{t_i} \cap X \subseteq R.$$

Lemma 3

There exists $\gamma < \lambda$ and an $Add(\kappa, 1)$ -name $\sigma \in V[G_{\gamma}]$ such that the following hold:

• $\Vdash_{\operatorname{Add}(\kappa,1)}^{V[G_{\gamma}]}$ " $\varphi_X(\sigma,a)$ holds in every further \mathbb{P}_{λ} -generic extension."

Lemma 3

There exists $\gamma < \lambda$ and an $Add(\kappa, 1)$ -name $\sigma \in V[G_{\gamma}]$ such that the following hold:

- $\blacksquare \Vdash_{\mathrm{Add}(\kappa,1)}^{V[G_{\gamma}]} "\varphi_X(\sigma,a) \text{ holds in every further } \mathbb{P}_{\lambda} \text{-generic extension."}$
- **2** For all $r \in Add(\kappa, 1)$, there exists a sequence

$$\overline{t}(r) = \langle t_i(r) \in T^{\sigma,r}_{\mathrm{Add}(\kappa,1)} : i < \delta \rangle \in V[G_{\gamma}]$$

such that in V[G],

$$\prod_{k<\delta} N_{t_i(r)} \cap X \subseteq R.$$

Let \mathbb{Q}_σ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

(a) A technical requirement, involving the sequences $\bar{t}(r)$ from Lemma 3, holds for p.

Let \mathbb{Q}_σ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

2 For all
$$t, u \in dom(p)$$
,
 $t \subseteq u$ implies $p(t) \subseteq p(u)$, and $t \perp u$ implies $p(t) \perp p(u)$.

S A technical requirement, involving the sequences t
 t(*r*) from Lemma 3, holds for *p*. (This requirement ensures that $\Vdash_{\mathbb{P}_{\lambda}}$ "the forcing \mathbb{Q}_{σ} adds a homomorphism from \mathbb{H}_{δ} to {*x* ∈ ^δ(^κκ) : ψ_R(*x̄*, *b*)}".)

Let \mathbb{Q}_σ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

2 For all
$$t, u \in dom(p)$$
,
 $t \subseteq u$ implies $p(t) \subseteq p(u)$, and $t \perp u$ implies $p(t) \perp p(u)$.

S A technical requirement, involving the sequences t *t*(*r*) from Lemma 3, holds for *p*. (This requirement ensures that $\Vdash_{\mathbb{P}_{\lambda}}$ "the forcing Q_σ adds a homomorphism from \mathbb{H}_{δ} to {*x* ∈ ^δ(^κκ) : ψ_R(*x̄*, *b*)}".)

We let $p \leq_{\mathbb{Q}_{\sigma}} q$ if and only if $\operatorname{dom}(p) \supseteq \operatorname{dom}(q)$, and

- p(t) = q(t) for every non-terminal node $t \in dom(q)$, and
- $p(t) \supseteq q(t)$ for every terminal node t of dom(q).

Let \mathbb{Q}_σ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

• dom(p) is a subtree of
$${}^{<\kappa}\delta$$
 of size $<\kappa$.

2 For all
$$t, u \in dom(p)$$
,
 $t \subseteq u$ implies $p(t) \subseteq p(u)$, and $t \perp u$ implies $p(t) \perp p(u)$.

S A technical requirement, involving the sequences $\overline{t}(r)$ from Lemma 3, holds for p. (This requirement ensures that $\Vdash_{\mathbb{P}_{\lambda}}$ "the forcing \mathbb{Q}_{σ} adds a homomorphism from \mathbb{H}_{δ} to { $\overline{x} \in {}^{\delta}({}^{\kappa}\kappa) : \psi_{R}(\overline{x}, b)$ }".)

We let $p \leq_{\mathbb{Q}_{\sigma}} q$ if and only if $\operatorname{dom}(p) \supseteq \operatorname{dom}(q)$, and

- p(t) = q(t) for every non-terminal node $t \in dom(q)$, and
- $p(t) \supseteq q(t)$ for every terminal node t of dom(q).
- A \mathbb{Q}_{σ} -generic filter K adds a \subseteq and \perp -preserving map

$$\iota_K: {}^{<\kappa}\delta \to {}^{<\kappa}\kappa; \ t \mapsto \bigcup \{p(t): p \in K\}.$$

 \mathbb{Q}_{σ} is equivalent to $\mathrm{Add}(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ .

 \mathbb{Q}_{σ} is equivalent to $\operatorname{Add}(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ . Thus, $V[G] = V[G_{\gamma}][H][K]$, where H and K are mutually generic filters for \mathbb{P}_{λ} and \mathbb{Q}_{σ} over $V[G_{\gamma}]$.

 \mathbb{Q}_{σ} is equivalent to $\operatorname{Add}(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ . Thus, $V[G] = V[G_{\gamma}][H][K]$, where H and K are mutually generic filters for \mathbb{P}_{λ} and \mathbb{Q}_{σ} over $V[G_{\gamma}]$.

Working in V[G], let $g: {}^{\kappa}\delta \to {}^{\kappa}\kappa; y \mapsto \bigcup \{\iota_K(t): t \subsetneq y\}.$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

- g(y) is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.
- $e V[G] \text{ is a } \mathbb{P}_{\lambda} \text{-generic extension of } V[G_{\gamma}][g(y)].$

 \mathbb{Q}_{σ} is equivalent to $\operatorname{Add}(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ . Thus, $V[G] = V[G_{\gamma}][H][K]$, where H and K are mutually generic filters for \mathbb{P}_{λ} and \mathbb{Q}_{σ} over $V[G_{\gamma}]$.

Working in V[G], let $g: {}^{\kappa}\delta \to {}^{\kappa}\kappa; y \mapsto \bigcup \{\iota_K(t): t \subsetneq y\}.$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

- g(y) is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.
- $e V[G] \text{ is a } \mathbb{P}_{\lambda} \text{-generic extension of } V[G_{\gamma}][g(y)].$

3 Therefore $\sigma^{g(y)} \in X$.

 \mathbb{Q}_{σ} is equivalent to $\operatorname{Add}(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ . Thus, $V[G] = V[G_{\gamma}][H][K]$, where H and K are mutually generic filters for \mathbb{P}_{λ} and \mathbb{Q}_{σ} over $V[G_{\gamma}]$.

Working in V[G], let $g: {}^{\kappa}\delta \to {}^{\kappa}\kappa; y \mapsto \bigcup \{\iota_K(t): t \subsetneq y\}.$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

•
$$g(y)$$
 is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.

 ${}^{{}_{\bullet}}$ V[G] is a \mathbb{P}_{λ} -generic extension of $V[G_{\gamma}][g(y)]$.

3 Therefore $\sigma^{g(y)} \in X$.

Let

$$f: {}^{\kappa}\delta \to X; \ y \mapsto \sigma^{g(y)}.$$

f is a continuous map and is a homomorphism from \mathbb{H}_{δ} to R. (Item 3 in the definition of \mathbb{Q}_{σ} guarantees this).

• Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$?

• Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of $OGD_{\omega}^{\omega}(X)$ in the previous theorem?

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of $OGD_{\omega}^{\omega}(X)$ in the previous theorem?

Conjecture: all of them do.

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
 Conjecture: all of them do.
- Which applications of $OGD_{\omega}^{\delta}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
 Conjecture: all of them do.
- Which applications of $OGD_{\omega}^{\delta}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- For $\kappa > \omega$, let OGA_{κ} say: $OGA_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of OGD^{\omega}_{\omega}(X) in the previous theorem?
 Conjecture: all of them do.
- Which applications of $OGD_{\omega}^{\delta}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- For κ > ω, let OGA_κ say: OGA_κ(X) holds for all X ⊆ ^κκ (i.e. if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺).

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
 Conjecture: all of them do.
- Which applications of $OGD_{\omega}^{\delta}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- For κ > ω, let OGA_κ say: OGA_κ(X) holds for all X ⊆ ^κκ (i.e. if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺).

Is OGA_{κ} consistent?

- Suppose $\kappa > \omega$. Is it consistent that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$? For all subsets of ${}^{\kappa}\kappa$ which are definable using parameters in ${}^{\kappa}Ord$?
- Which applications follow already from the restricted version of OGD^{\omega}_{\omega}(X) in the previous theorem?
 Conjecture: all of them do.
- Which applications of $OGD_{\omega}^{\delta}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- For κ > ω, let OGA_κ say: OGA_κ(X) holds for all X ⊆ ^κκ
 (i.e. if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺).

Is OGA_{κ} consistent? If so, how does it influence the structure of the κ -Baire space?

Thank you!

Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of $\kappa \kappa$