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Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections and unions
of size ≤ κ and complementation.

Σ1
1(κ) sets: continuous images of κ-Borel sets;
equivalently: continuous images of closed sets.
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The open graph dichotomy for subsets of κκ

Let κ be an infinite cardinal such that κ<κ = κ. Let X ⊆ κκ. A graph G on X is
an open graph if it is an open subset of X ×X.

OGDκ(X)

If G is an open graph on X, then either
G has a κ-coloring (i.e., X is the union of κ many G-independent sets),

or G includes a κ-perfect complete subgraph, (i.e., there is a continuous
injection f : κ2→ X such that (f(x), f(y)) ∈ G for all distinct x, y ∈ κ2.)

OGAκ(X)

If G is an open graph on X, then either
G has a κ-coloring,
or G includes a complete subgraph of size κ+.
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OGDκ(X) for definable subsets X of κκ

Theorem (Feng, 1993)
1 OGDω(X) holds for all Σ1

1 subsets X ⊆ ωω.

2 In Col(ω,<λ)-generic extensions, where λ is inaccessible, OGDω(X)
holds for all subsets X ⊆ ωω definable from an element of ωOrd.

Suppose κ is an uncountable cardinal such that κ<κ = κ.

Theorem (Sz., 2017)

In Col(κ,<λ)-generic extensions, where λ > κ is inaccessible, OGDκ(X)
holds for all Σ1

1(κ) subsets X ⊆ κκ.

Theorem (Schlicht, Sz., 2018)

In Col(κ,<λ)-generic extensions, where λ > κ is inaccessible, OGDκ(X)
holds for all subsets X ⊆ κκ definable from an element of κOrd.

These results give the exact consistency strength of these statements.
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A higher dimensional version

Introduced in the κ = ω case by R. Carroy, B.D. Miller and D.T. Soukup.

Suppose κ<κ = κ ≥ ω. Let X ⊆ κκ and let 2 < δ ≤ κ. A δ-dimensional
dihypergraph is a set H ⊆ δX of non-constant sequences.

H is box-open if it is open in the box topology on δX.

OGDδ
κ(X)

If H is a δ-dimensional box-open dihypergraph on X then either
H has a κ-coloring, or
there exists a continuous map f : κδ → X which is a homomorphism
from Hδ to H (i.e. f δ(Hδ) ⊆ H), where

Hδ = {x ∈ δ(κδ) : (∃t ∈ <κδ)(∀α < δ) t_〈α〉 ⊂ xα}.

OGD2
κ(X) implies the open graph dichotomy OGDκ(X).
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Applications of OGDω
ω(X)

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

OGDω
ω(X) holds for all Σ1

1 subsets X of ωω

(and more generally, for all
analytic Hausdorff spaces).

Theorem (R. Carroy, B.D. Miller, D.T. Soukup, 2018)

Suppose X is a separable metric space such that OGDω
ω(X) holds.

X satisfies the Hurewicz dichotomy (characterizes when X is
contained in a Kσ subset of ωω).
The Jayne-Rogers theorem holds for X (characterizes when a given
function from X to a separable metric space is ∆0

2-measurable).
A theorem of Lecomte and Zeleny holds for X, which characterizes
when a graph on X has ∆0

2-measurable ℵ0-coloring.
Several other applications . . .
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OGDδ
κ(X) for definable subsets of κκ

Theorem (Schlicht, Sz., 2019)

Suppose κ<κ = κ ≥ ω. In Col(κ,<λ)-generic extensions, where λ > κ is
inaccessible, the following hold for all subsets X ⊆ κκ which are definable
from an element of κOrd:

1 OGDδ
κ(X), where 2 ≤ δ < κ.

2 OGDκ
κ(X) restricted to the family of those κ-dimensional box-open

dihypergraphs H on X which are definable from an element of κOrd.

This theorem gives the exact consistency strength of these statements.
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Sketch of the proof

Let λ > κ be inaccessible, and let G be Col(κ,<λ)-generic over V .

For all α ≤ λ, let Pα = Col(κ,<α) and Gα = G ∩Pα.
In V [G], assume:

X ⊆ κκ is defined by a formula ϕX with a parameter a ∈ κOrd. That is,
X = {x ∈ (κκ)V [G] : V [G] |= ϕX(x, a)}.

R is a δ-dimensional box-open dihypergraph on X which has no κ-coloring.
R is defined by a formula ψR with a parameter b ∈ κOrd. That is,

R = {x ∈ (δ(κκ))V [G] : V [G] |= ψR(x, b)}).

(When δ < κ, this can be assumed whenever R is box-open.)

We can also assume that a, b ∈ V .

Let x ∈

X −
⋃
{[T ] : T ∈ V is a subtree of <κκ, [T ] is R-independent}.

Then x ∈ V [Gα] for some α < λ. Let ẋ be a Pα-name for x.
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Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of κκ



Sketch of the proof

Let λ > κ be inaccessible, and let G be Col(κ,<λ)-generic over V .
For all α ≤ λ, let Pα = Col(κ,<α) and Gα = G ∩Pα.
In V [G], assume:

X ⊆ κκ is defined by a formula ϕX with a parameter a ∈ κOrd. That is,
X = {x ∈ (κκ)V [G] : V [G] |= ϕX(x, a)}.

R is a δ-dimensional box-open dihypergraph on X which has no κ-coloring.
R is defined by a formula ψR with a parameter b ∈ κOrd. That is,

R = {x ∈ (δ(κκ))V [G] : V [G] |= ψR(x, b)}).

(When δ < κ, this can be assumed whenever R is box-open.)

We can also assume that a, b ∈ V .

Let x ∈

X −
⋃
{[T ] : T ∈ V is a subtree of <κκ, [T ] is R-independent}.

Then x ∈ V [Gα] for some α < λ. Let ẋ be a Pα-name for x.
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Sketch of the proof (the κ = ω case)

For κ = ω, the theorem can be proved using an argument similar to Feng’s
proof, and to an argument of Solovay’s.

These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V [G], V [G] is a Pλ-generic
extension of V [y].

This lemma fails when κ > ω (Schlicht).
We construct a ≤ and ⊥-preserving map ι : <κδ → Pα such that for all y ∈ κδ,

gy = {q ∈ Pα : q ≥ ι(t) for some t ( y} is a Pα-generic filter.

By the next lemma, ι can be defined in such a way that ẋgy ∈ X for all y ∈ κδ,
and the (continuous) map

f : κδ → X; y 7→ ẋgy

is a homomorphism from Hδ to H.
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Sketch of the proof (the κ = ω case)

For any forcing Q, any q ∈ Q and any Q-name σ, define

Tσ,qQ = {t ∈ <κκ : (∃r ≤ q) r 
VQ t ⊆ σ},

the tree of possible values for σ below q.

Lemma 2
There exists p ∈ Pα such that the following hold.

1 p 
VPα “ϕX(ẋ, a) holds in every further Pλ-generic extension of V [ẋ].”

2 For all r ∈ Pα below p, there exists (in V [G]) a sequence

〈ti ∈ T ẋ,rPα : i < δ〉

such that (in V [G]) ∏
i<δ

Nti ∩X ⊆ R.
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2 For all r ∈ Pα below p, there exists (in V [G]) a sequence
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Sketch of the proof (the κ > ω case)

Lemma 3
There exists γ < λ and an Add(κ, 1)-name σ ∈ V [Gγ ] such that the
following hold:

1 
V [Gγ ]
Add(κ,1)“ϕX(σ, a) holds in every further Pλ-generic extension.”

2 For all r ∈ Add(κ, 1), there exists a sequence

t(r) = 〈ti(r) ∈ T σ,rAdd(κ,1) : i < δ〉 ∈ V [Gγ ]

such that in V [G], ∏
i<δ

Nti(r) ∩X ⊆ R.
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Sketch of the proof (the κ > ω case)

Let Qσ consist of those partial maps p from <κδ to <κκ such that

1 dom(p) is a subtree of <κδ of size < κ.

2 For all t, u ∈ dom(p),
t ⊆ u implies p(t) ⊆ p(u), and t ⊥ u implies p(t) ⊥ p(u).

3 A technical requirement, involving the sequences t(r) from Lemma 3,
holds for p.

(This requirement ensures that 
Pλ “the forcing Qσ adds a
homomorphism from Hδ to {x ∈ δ(κκ) : ψR(x, b)}”.)

We let p ≤Qσ q if and only if dom(p) ⊇ dom(q), and

p(t) = q(t) for every non-terminal node t ∈ dom(q), and

p(t) ⊇ q(t) for every terminal node t of dom(q).

A Qσ-generic filter K adds a ⊆ and ⊥-preserving map

ιK : <κδ → <κκ; t 7→
⋃
{p(t) : p ∈ K}.
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Sketch of the proof (the κ > ω case)

Qσ is equivalent to Add(κ, 1), since it is <κ-closed, nonatomic, and of size κ.

Thus, V [G] = V [Gγ ][H][K], where H and K are mutually generic filters for Pλ
and Qσ over V [Gγ ].

Working in V [G], let g : κδ → κκ; y 7→
⋃
{ιK(t) : t ( y}.

Lemma 4
Let y ∈ κδ.

1 g(y) is Add(κ, 1)-generic over V [Gγ ].

2 V [G] is a Pλ-generic extension of V [Gγ ][g(y)].

3 Therefore σg(y) ∈ X.

Let
f : κδ → X; y 7→ σg(y).

f is a continuous map and is a homomorphism from Hδ to R. (Item 3 in the
definition of Qσ guarantees this).
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Questions

Suppose κ > ω. Is it consistent that OGDκ
κ(X) (i.e., for all box-open

κ-dimensional dihypergraphs) holds for Σ1
1(κ) subsets X ⊆ κκ?

For
all subsets of κκ which are definable using parameters in κOrd?

Which applications follow already from the restricted version of
OGDω

ω(X) in the previous theorem?
Conjecture: all of them do.

Which applications of OGDδ
ω(X) can be generalized to the setting of

κ-Baire spaces for κ > ω?

For κ > ω, let OGAκ say: OGAκ(X) holds for all X ⊆ κκ
(i.e. if X ⊆ κκ and G is an open graph on X, then either G has a
κ-coloring or G includes a complete subgraph of size κ+).

Is OGAκ consistent? If so, how does it influence the structure of the
κ-Baire space?
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Thank you!
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