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ABSTRACT. We prove that the principle of Dependent Choice is equivalent to the existence of a countable
elementary submodel of every model of a theory in a countable language. We attempt in extending this to
infinite cardinals as well, with partial success.

1. INTRODUCTION

Let DC abbreviate the following statement, “Every tree T of height ω and without terminal nodes has
an infinite branch”. And let LS abbreviate the statement “Every infinite model M of a countable language
L, has a countable elementary submodel”.

In this note we prove the equivalence of the two as weak choice principles. After writing the initial
draft of this paper (including the equivalence of these), it was revealed that in fact Christian Espíndola
has proved the above, and extended these results. In his unpublished note (at time of writing) he
points out that the equivalence was known, but not widely known, and appears in a book by G. Boolos.
Espíndola also proves a stronger result which we discuss in the third section.

Before we proceed, a word about the notation. We will denote L-structure by Gothic letters, and their
universes by the corresponding Latin letters. To ease the reading we write ~a ⊆ A to mean that ~a is a
finite tuple of the appropriate length, all whose elements are from A. It should be clear that all the proofs
appearing here are in ZF.

To avoid confusion in the absence of choice, A is an elementary submodel of M if it is a substructure
and for every ~a ⊆ A and ϕ(~x) we have M |= ϕ(~a) ⇐⇒ A |= ϕ(~a). If M is an L-structure, A is a
subset of M , and ϕ is the L-formula ∃yψ(~x, y), we say that f is an A-Skolem function for ϕ when
dom f = {~a ⊆ A |M |= ∃yψ(~a, y)}, its range is in M and for all ~a ∈ dom f we have M |= ψ(~a, f(~a)).

Some uses of DC which we will use include the axiom of choice for countable families of sets, and the
fact that countable unions of countable sets are countable. It is not hard to show that DC implies the
first (by considering the tree defined by extension of choice functions from the first n sets), which in turn
implies the latter (by the standard proof from ZFC).

Lemma 1. Suppose that T is a countable tree that has height ω and no terminal nodes, then it has a branch.

Proof. Enumerate T as {tn | n ∈ ω}, and without loss of generality t0 is the root of T . we define a
function by recursion, let f(0) to be the root. Suppose that f(n) was defined from the n-th level, then
f(n+1) = tk such that k is the least index of an immediate successor of f(n). The set rng f is an infinite
branch by definition. �

The Downward Löwenheim-Skolem theorem often allows us to “generate” a submodel from a given
set, whereas LS only assures the existence of some submodel. However the two are equivalent over ZF
as the following lemma shows.

Lemma 2. LS is equivalent to the statement “If M is an infinite model of a countable language, and B ⊆M
is countable, then there is an elementary submodel A of M such that B ⊆ A”.

Proof. It is clear that LS follows from the statement. Assume LS and let M be an infinite model of a
countable language L, and B ⊆M a countable set. Augment L by adding constant symbols cb for b ∈ B
and let M+ be the model where we interpret cb as b itself. From LS there is A+ which is a countable
elementary submodel, and since cMb = b we have that B ⊆ A as wanted, restricting back to L finishes
the proof of the statement. �
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2. THE MAIN THEOREM

Theorem 3. DC and LS are equivalent.

Proof. Assume LS, and let T be a tree of height ω without terminal nodes. We can see T as a structure
of the language L = {<} satisfying the axioms that T is a partial order, and T satisfies the axiom
∀x∃y(x < y), i.e. there are no terminal nodes. Let T ′ be a countable elementary submodel of T , then T ′

is a tree of height ω without terminal nodes. Moreover if x ∈ T ′ then its level in T and in T ′ are the same,
since if T ′ satisfies “There exists exactly n different elements below x”, then so must T by elemetnarity.
Therefore if A ⊆ T ′ is a branch in T ′ it is a branch in T .

Assume DC, and let M be an infinite model of a countable language L, which we may assume contains
only relation symbols. We define by induction a sequence of substructures of M, the collection of all these
definitions is naturally ordered as a tree, if we succeed in our induction process then we prove that the
tree is of height ω and has no terminal nodes. Therefore by DC there exists a branch, and we will show
that this branch defines an elementary submodel.

Let A0 = ∅, and let F0 be a collection of A0-Skolem functions. Since L is countable, we can use
DC to choose such function for every ϕ. Suppose that Ak was defined and Fk was defined, let Ak+1 =
Ak ∪

⋃
{rng f | f ∈ Fk} and let Fk+1 be a collection of Ak+1-Skolem functions extending Fk, that is if

f ∈ Fk an A-Skolem function for ϕ and f ′ ∈ Fk+1 is a Skolem function for ϕ, then for every ~a ⊆ An the
functions agree: f(~a) = f ′(~a). We can extend Fk in such manner because again we only make countably
many choices (there are countably many new elements, so countably many new tuples to handle).

Let A =
⋃
{An | n ∈ ω}, then A is countable, as a countable union of countable sets. Let A be the

substructure of M whose universe is A and the interpretation of the relations are just their restriction to
A. We will show that A is an elementary submodel of M, by induction on the complexity of formulas ϕ.

If ϕ is atomic then there is some relation symbol R such that ϕ(~x) = R(~x), then by the definition of A
we have that M |= ϕ(~a) ⇐⇒ A |= ϕ(~a), for all ~a ⊆ A. For ϕ which is the negation or connection (con-
junction, disjunction, material implication) of shorter formulas the statement follows from the definition
of truth tables of negation and the various connectives.

Finally, if ϕ(~x) = ∃yψ(~x, y) and ~a ⊆ A then there is some n such that ~a ⊆ An and f ∈ Fn which is an
An-Skolem function for ϕ. If M |= ϕ(~a), then f(~a) = b is such that M |= ψ(~a, b) and b ∈ An+1 ⊆ A. By
the induction hypothesis A |= ψ(~a, b) and therefore A |= ϕ(~a). If A |= ϕ(~a) then for some b ∈ A we have
A |= ψ(~a, b), and so M |= ψ(~a, b) and therefore M |= ϕ(~a) as wanted. �

3. ...TO THE UNCOUNTABLE

The previous section shows that for the countable case there is a full equivalence between the known
Löwenheim-Skolem theorem, and DC. It is natural to ask whether or not one can repeat the same proof
on a larger scale. For an infinite ℵ cardinal κ we define DCκ as the principle stating “Every tree of height
κ, where every branch of length<κ can be extended, has a branch of length κ”. Similarly LS(κ) is defined
as “Every infinite model in a language of cardinality ≤κ has an elementary submodel of cardinality ≤κ”.
We also introduce ACκ as the abbreviation that every family of κ non-empty sets admits a choice function.

Let us quickly review some properties of DCκ and ACκ. Both are continuous, meaning if κ is singular
and for every λ < κ, DCλ holds then DCκ holds (and similarly for ACκ). Both principles also reflect
down, DCκ implies DCλ for every λ < κ (and similarly for ACκ). Finally, it can be shown that DCκ
implies ACκ and that this implication is strict, moreover if λ < κ then ACκ and DCλ are completely
independent - neither one implies the other. All these results can be found in Chapter 8 of [Jec73].

We can try and retrace the above proof, it is not very hard to repeat the proof that DCκ readily
implies LS(κ) holds. However when one tries to prove that LS(κ) implies DCκ, one runs into a problem.
The reason is that whereas the notion of a “short branch” in a tree of height ω is just a finite chain,
which can be fully expressed using first-order logic as a schema, but when trying to talk about infinite
branches, first-order logic is too weak, and the proof fails. Perhaps there is another way to do that
without modifying our definitions for choice principles? No, we can’t.

Theorem 4. For every ℵ cardinal κ, LS(κ) is equivalent to the conjunction of DC and ACκ.

Proof. To show that DC and ACκ imply LS(κ), we can repeat the proof of Theorem 3. Note that the
inductive definition of the An themselves only used ACω, and the only real use of DC in the proof was in
the passing from the inductive definition to the existence of an actual sequence. In this case, observe that
the inductive definition requires ACκ to be applied where ACω was applied, but we only need a sequence
of length ω, so DC suffices, and the proof carries perfectly.
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In the other direction, note that the formulation of LS(κ) immediately implies LS and so DC holds.
Given a family of non-empty sets {Mα | α < κ}, consider the language which has κ unary predicates Rα,
let T be the theory {∃xRα(x) | α < κ}, and let M be a structure for the language of T whose universe is⋃
{Mα | α < κ} and RM

α = Mα, it is not hard to see that indeed M |= T . By LS(κ) we have that M has
an elementary submodel of size ≤κ, A. Therefore A |= ∃xRα(x) for every α, and since it is a substructure
of M we have that RM

α = A∩Mα. Finally, A can be well-ordered, so we can simply pick an element from
each A ∩Mα, which ends up as a choice function for the original family as well. �

Corollary 5. The statement “for every ℵ cardinal κ, LS(κ)" is equivalent to "for every ℵ cardinal κ, ACκ".

Proof. The first statement obviously implies the second. The second statement implies DC (see [Jec73,
Theorem 8.2]), and therefore the first statement as well. �

The question remains open whether or not we can find an equivalent for DCκ, and while we’re on the
subject for ACp for non-ℵ cardinals. The daunting task would be to find a logic which has a downward
Löwenheim-Skolem theorem to begin with, which can express the notion that every “short" branch can
be continued to solve the former; and to find a way to circumvent the deep use of the well-orderability
of κ that we did in the above proof for the latter.

If anything is likely, then it seems that DCκ would require an infinitary logic, or some second-order
quantifier. Possibly the combination of those two.
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