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Abstract. Let V be a vector space over R. Denote by V ∗ the algebraic dual of V , and for a topological
vector space denote by V ′ the continuous dual. We will show that the following implications are not provable

without the axiom of choice: (1) V ∼= V ∗ implies that dimV < ∞ (2) V ∼= V ∗∗ by a natural isomorphism

if and only if dimV <∞; (3) If V is a Banach space, V ′ is reflexive if and only if V is reflexive; (4) If V is
a reflexive Banach space, W ⊆ V is a closed subspace, then W is also reflexive; (5) If V ′ is separable then

V is separable.

1. Introduction

For a general vector space V denote its algebraic dual by V ∗, the set of linear functions from V to the
field, and for a topological vector space V denote by V ′ the subspace of V ∗ which exactly the continuous
linear functionals.

To allow functional analysis behave nicely will make heavy use of the Principle of Dependent Choice, DC,
which states that if S is a non-empty set, and R is a binary relation on S whose domain is S and for every
x ∈ S there is some y ∈ S such that x R y, then there is a sequence sn for n ∈ ω such that sn R sn+1 for all
n ∈ ω.

This choice principle implies the Baire Category theorem [Her06Her06, Th. 4.106], and that the product of a
countable collection of non-empty set is non-empty. Under this choice principle we have that in metric spaces
compactness is equivalent to the assertion that every infinite set contains an accumulation point [Her06Her06,
Th. 3.27].

If X is a topological space and A ⊆ X we say that A has the Baire property has the Baire property if
there is an open set U such that A4U is a countable union of nowhere dense sets. Let the assertion “Every
set of real numbers has the Baire property” be abbreviated as BP. Consider a model of ZF+DC+BP, such
as Solovay’s model [Sol70Sol70] or Shelah’s model [She84She84]. In models of ZF + DC + BP as these two we have that
every ultrafilter on ω is principal, since free ultrafilters fail to have the Baire property.

We will show in this document the following things:

• It is consistent that V is a vector space which is not finitely generated, and V ∼= V ∗ (in contrast to
ZFC where dimV < dimV ∗ for infinitely dimensional spaces), Corollary 6Corollary 6.

• It is consistent that V is a vector space which is not finitely generated and V is naturally isomorphic
to V ∗∗ (in contrast to ZFC where this holds if and only if dimV <∞), Theorem 5Theorem 5.

• It is consistent that W ⊆ V is a closed subspace of a Banach space, and V ∼= V ′′, but W � V ′′ (in
contrast to ZFC where a closed subspace of a reflexive Banach space is reflexive), Corollary 8Corollary 8.

• It is consistent that V is a Banach space such that V ′ is reflexive, but V is not (in contrast to ZFC
where the reflexivity of V ′ implies the reflexivity of V ), Corollary 8Corollary 8.

• It is consistent that V is a Banach space such that V ′ is separable, but V is not separable (in contrast
to ZFC where the separability of V ′ implies separability of V ), Corollary 9Corollary 9.

2. Some Preliminary Theorems

Let us quote some theorems and draw some basic conclusions to be used later.

Theorem 1. Let G,H be topological groups and ϕ : G→ H a homomorphism. If for every A ⊆ H that has
the Baire property ϕ−1(A) has the Baire property, and H is separable then ϕ is continuous.
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The proof of this theorem appears in [Kec95Kec95, Th. 9.10]. Assuming ZF + DC + BP this theorem implies
that if V,W are Banach space, W separable and T : V → W is linear then T is continuous. We remark
that assuming that every set of real numbers is Lebesgue measurable can yield a seemingly stronger theorem
which drops the requirement that W is separable, see [Gar74Gar74].

Let us assume from this point onwards that we work in a model whose theory includes ZF + DC + BP.

Corollary 2. If V is a Banach space over a separable field K then V ∗ = V ′. �

As remarked above, the Baire category theorem holds in ZF+DC and therefore the open mapping theorem
holds:

Theorem 3 (Open Mapping Theorem). Let V,W be Banach spaces. If T : E → F is a linear operator and
T is surjective then T is open.

We will consider the spaces of the form `p = `p(N) over R for 1 ≤ p ≤ ∞. Recall that `p is the space of
all sequences 〈an | n ∈ N〉 of real numbers such that

∑∞
n=1 |an|p is finite. Even without the full axiom of

choice these are still Banach spaces, and `2 is a Hilbert space with the inner product:

〈a, b〉 =

∞∑
n=1

anbn

Note that the closed unit ball of any `p is not compact since the standard Schauder basis is a closed and
discrete set on the unit sphere without an accumulation point (and as remarked in the introduction under
the assumption of DC this is equivalent to non-compactness in metric spaces).

Theorem 4 (Pitt). If 1 < p < q then every continuous linear operator T : `p → `q is compact, namely
{Tx : ‖x‖p ≤ 1} is compact in `q.

The open mapping theorem appears in [Ped89Ped89, Th. 2.24], whereas a proof of Pitt’s theorem can be found
in [Del09Del09]. We remark that Pitt’s theorem proof does not use more choice than DC, since all the spaces in
question are metrizable.

One direct corollary from these two theorems is that if p < q for p, q ∈ [1,∞] then `p is not linearly
isomorphic to `q. Otherwise there was a linear bijection T : `q → `p, since `p is separable (this would be false
if p =∞ but p < q ≤ ∞) Theorem 1Theorem 1 ensures that T is continuous and by the open mapping theorem open.
We have, if so, that it is a homeomorphism between the spaces as well. Pitt’s theorem now tells us that T
is a compact operator, in turn this means that T maps the closed unit ball of `q to a compact set in `p, and
that T−1 maps a compact set to a non-compact set in contradiction to the fact it is a homeomorphism.

The above is in contrast with ZFC where all these spaces have Hamel basis of size 2ℵ0 and therefore
isomorphic as vector spaces (such linear isomorphism would have to be discontinuous, of course).

3. The Main Result

We finally arrive at the main results. One could have asked, what is all the hard work for? We already
know that `′2 = `2, that would have given the nice counterexample that we wanted and we can move on.
However we shall exhibit a continuum of non-isomorphic examples for self-dual Banach spaces, at the cost
of a slightly lengthier discussion for the interested reader.

Theorem 5. Let p ∈ (1,∞) and q such that 1
p + 1

q = 1, then `∗p = `q. Furthermore the natural map from

`p to `∗∗p defined by x 7→ evalx, where evalx(ϕ) = ϕ(x), is the identity.

Proof. For p > 1 let q = p
p−1 . The proof that `′p = `q and vice versa is fully in ZF by using the Hölder

inequality. Using Corollary 2Corollary 2 we have that `∗p = `′p = `q, therefore `∗∗p = `p.
Suppose ϕ is a linear functional on `p, then there is u ∈ `q such that:

ϕ(x) =

∞∑
n=1

xnun

Similarly the evaluation function evalx takes u ∈ `q and maps it to the above sum, we can now reconstruct
x by applying evalx to the standard Schauder basis and restore xn for all n, and therefore the map is the
identity as wanted. �
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Corollary 6. Let p ∈ (0,∞) and q as above, and denote by V = `p ⊕ `q. This is a Banach space, and
therefore V ′ = V ∗, and therefore V ∗ = `∗q ⊕ `∗p = `p ⊕ `q = V , and as before V is naturally isomorphic to
V ∗∗. �

Having cleared all the finite pairs of (p, q) we finish with a note on the case of p = 1, q =∞.

Theorem 7. Recall that `′1 = `∞. If `1 ( `′∞ then BP does not hold.

The proof appears as Theorem 29.38 in [Sch97Sch97]. From this we have that `∗∗1 = `′′1 = `′∞ = `∗∞ = `1 We
therefore have that in Solovay’s model for every p ∈ [1,∞] we have that `p is a reflexive space both in the
topological sense as well as in the algebraic sense.

Corollary 8. c0 is a closed subspace of `∞, and c′0 = `1. Therefore c′′0 = `∞ 6= c0. In particular we have an
irreflexive closed subspace of a reflexive space, as well c′0 is reflexive, but c0 is not.

Corollary 9. `′∞ = `1 is separable, however `∞ is not separable.
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