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Abstract

Läuchli constructed a model of ZF in which there is a vector
space which is not of finite dimension, but every proper subspace
is of a finite dimension. In Läuchli’s model the axiom of choice fails
completely, there is a countable family from which we cannot choose
representatives.

In this work we generalize Läuchli’s original proof. In the proof
presented here we show that we may choose any cardinal µ and con-
struct a model of ZF in which there is a vector space such that every
proper subspace has dimension less than µ, but the vector space itself
is not spanned by any linearly independent subset. The construction
uses a technique called symmetric extensions, which is used to cre-
ate models in which the axiom of choice fails. In the first chapter we
will review this technique, and weak versions of the axiom of choice.
We show that in our construction we may preserve relatively large
fragments of choice in the universe.

We also generalize a theorem by Monro which states that it is
consistent without the axiom of choice that there are infinite sets
which have no countably infinite subset, but can be mapped onto
very large ordinals. Our proof uses the method of symmetric exten-
sions, in contrast to Monro which took a different approach, and we
show that for any two regular cardinals λ ≤ κ we may construct a
model of ZF in which there is a set that can be mapped onto κ, and
λ is the least ordinal which cannot be injected into this set.

In the third chapter we present a recent paper of Feldman, Orhon
and Blass. In this paper the authors prove that if there is a finite
bound on the size of antichains of cardinals then the axiom of choice
holds. We review the original results and extend them to hold for a
weaker notion of a quasi-ordering of the cardinals. We also answer
one of the questions presented in the paper, and add questions of our
own.
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0
Introduction

In modern mathematics one usually works within the framework of ZFC.
Assuming the axiom of choice every vector space has a basis, and therefore
has many non-trivial linear functionals and linear endomorphisms. In fact,
Blass proved that the assertion that every vector space has a basis implies
the axiom of choice (see [Bla84Bla84]).

Before Blass’ theorem it was already known that it is consistent that
there are vector spaces without a basis. Läuchli constructed a model of
ZF without the axiom of foundation, in which the axiom of choice fails
and there is a vector space over a countable field which is not spanned
by any finite subset, but every proper subspace has a finite dimension
(see [Läu63Läu63]). The same proof can be carried in ZFA, the theory of ZF
weakened to allow atoms (non-sets).

Several years later Jech and Sochor proved a transfer theorem which
allowed the construction of Läuchli, when carried in ZFA to be transferred
into a model of ZF (see [JS66aJS66a, JS66bJS66b], and [Jec73Jec73, Chapter 6]). Finally
the consistency of ZF with the existence of a vector space which had no
basis was proved. The transfer theorem, however, has a limited power in
transferring unbounded statements. Namely, it can be used to show the
existence of such a peculiar vector space, but it cannot be used to transfer
a statement of the form “Every set has property ϕ”.

In the years to come it seems that some writers have forgotten parts
of Läuchli’s model. They presented it as a model in which there exists a
vector space which has no basis, or as a vector space which is not finitely
generated and every proper subspace has a finite dimension (see [Jec73Jec73,
Theorem 10.11]). These presentations would not mention the fact that
the dual space is trivial, or that there are only scalar endomorphisms.

A main goal of this work is to present a generalization of Läuchli’s
model, which will establish that a weakened version of the axiom of
choice (or rather Zorn’s lemma) is not sufficient to prove the existence of
non-scalar endomorphisms and non-zero linear functionals for every non-
trivial vector space. We do so in the second chapter, where we present a
forcing construction directly in ZF, rather than ZFA or ZF without foun-
dation.

The first chapter will be dedicated to cover the techniques required
for this proof, in particular symmetric extensions. Symmetric exten-
sions are inner models to generic extensions obtained by forcing, these
lie between the ground model and the extension and are models of ZF
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2 0. Introduction

which usually do not satisfy the axiom of choice. The idea of symmetries
goes back to Fraenkel in the early 1920’s, who constructed models with
atoms which contradicted the axiom of choice. The original method had
a mistake which was later corrected by Fraenkel in 1937 and improved by
Mostowski in the subsequent years. The final touch of the technique was
given by Specker in 1956. We will not present this technique, but rather
jump directly to Cohen’s construction with forcing which draws from the
Fraenkel-Mostowski-Specker method.

We will also review three common weakening versions of the axiom
of choice, and we will define a technical construct called 2-permutations
which will play a role in defining the symmetric extension in the general-
ization of Läuchli’s theorem.

The third chapter will review a recent paper by Feldman, Orhon and
Blass (see [FOB08FOB08]), in which they prove that if there is a finite bound
over antichains of cardinals then the axiom of choice holds. This is a
generalization of a classical theorem by Hartogs which shows that if the
cardinals are linearly ordered then the axiom of choice holds. We will
present the original results from the paper, extend them and discuss open
questions appearing in the paper.



1
Preliminaries

In this chapter we review the basics of symmetric extensions by forcing,
as well as weak choice principles. We also introduce the notions of 2-
permutations and affine ideals which will be used in chapter 2chapter 2.

Some notational conventions are given first. If A is a set we will denote
by P(A) its power set, and by |A| the cardinal number of A, which is
defined to be the least ordinal in bijection with A if such ordinal exists
and otherwise it is the set

{B | ∃f : A→ B a bijection ∧ rank(B) is minimal} .

If |A| is an infinite ordinal we say that |A| is an ℵ cardinal, or a well-
ordered cardinal, or we say that |A| ∈ Ord where Ord is the class of
ordinals. If |A| ∈ ω we say that A is finite.

The cardinal numbers are partially ordered by ≤ where |A| ≤ |B| is to
say that there is a subset B′ of B such that |A| = |B′|, in particular this
means that there exists a bijection between A and B′, and an injection
from A into B. We can consider another ordering, ≤∗ defined by surjec-
tions, namely |A| ≤∗ |B| if either A = ∅ or there is a surjective function
from B onto A.

These two orders are equal under the axiom of choice, however with-
out it they may differ. Whereas ≤ is always a partial order (anti-symmetry
is guaranteed by the Cantor-Bernstein theorem which holds in ZF), the
relation ≤∗ need not be anti-symmetric (see Proposition 3.13Proposition 3.13).

We say that A is finite if |A| ∈ ω, and that A is infinite otherwise. For
an infinite set A we associate two particular well-ordered cardinals:

• ℵ(A), the first ordinal not injectable into A, known as the Hartogs
number of A,

ℵ(A) = min {α ∈ Ord | |α| � |A|} .

Equivalently we can define ℵ(A) as sup {α ∈ Ord | |α| ≤ |A|},

• ℵ∗(A), the least ordinal which A cannot be mapped onto, defined as

ℵ∗(A) = min {α ∈ Ord | |α| �∗ |A|} .

This is equivalent to ℵ∗(A) = sup {α ∈ Ord | |α| ≤∗ |A|}.

3



4 1. Preliminaries

If A is finite, we define ℵ(A) = ℵ∗(A) = ω. It is always the case that
ℵ(A) ≤ ℵ∗(A). If A is well-ordered then ℵ(A) = ℵ∗(A) = |A|+. We will
later see that the gap between the two can be made arbitrarily large in
models without the axiom of choice. We also note that |A| < ℵ(A) if and
only if A can be well-ordered.

We will use κ, λ, µ to denote ℵ cardinals. The Greek letters α, β, γ . . .
will always denote ordinals, and Gothic capital letters (e.g. M,N) will
denote models of ZF.

If α is an ordinal and κ is an ℵ cardinal we will write κ+α to be the
unique ℵ cardinal λ such that α is the order type of {µ ∈ [κ, λ) | µ is an ℵ}.

We assume that the reader is familiar with forcing, including the basic
theorems and the definitions. If P = 〈P,≤〉 is a notion of forcing we will
say that p is stronger than q if and only if p ≤ q. We shall always assume
that P has a maximum (weakest) element and it will be denoted by 1P, or
1 where P is clear from context. For A ⊆ P we say that A is dense below
p if for every q ≤ p there is r ∈ A such that r ≤ q. We say that A is dense
if it is dense below 1P.

Recall that a P-name in M is a set which is a member of the class MP,
defined by induction in M:

• MP
0 = ∅;

• MP
α+1 = P(P ×MP

α);

• MP
δ =

⋃
γ<δM

P
γ , If δ is a limit ordinal;

• MP =
⋃
α∈Ord M

P
α.

We shall denote with ẋ a P-name, and we say a name ẋ has P-rank α
if α is the least ordinal such that ẋ ∈MP

α. For x ∈M we shall denote by x̌
the canonical P-name for x. For a set of P-names, {ẋi | i ∈ I}we define the
canonical name of this set to be {ẋi | i ∈ I}• = {〈1P, ẋi〉 | i ∈ I}, similarly
〈ẋ, ẏ〉• is the canonical name {〈1P, {ẋ}•〉 , 〈1P, {ẋ, ẏ}•〉}.

Lastly, if G is a P-generic filter over M, and ẋ is a P-name we will
denote by ẋG as the interpretation of the name ẋ by the filter G, as an
element of M[G].

1.1 Symmetric Extensions by Forcing

Let M be a transitive model of ZFC, in this section it will always play the
role of the ground model. Let P = 〈P,≤〉 be a notion of forcing, it is a
basic theorem that in every generic extension of M the axiom of choice
holds (see [Jec03Jec03, Theorem 14.24]). We will use automorphisms of P to
define an intermediate model between M and a generic extension M[G],
which will violate the axiom of choice. From here on, Pwill always denote
an arbitrary notion of forcing.

Recall that an automorphism of P is a ≤-preserving bijection of P with
itself. We denote the group of automorphisms of P as Aut(P). Given
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π ∈ Aut(P) we extend it to MP by induction:

πẋ = {〈πp, πẏ〉 | 〈p, ẏ〉 ∈ ẋ}

Proposition 1.1. For every x ∈M and every π ∈ Aut(P) we have πx̌ = x̌.

Proof. By induction on rank,

πx̌ = {〈π1, πy̌〉 | y ∈ x} = {〈1, y̌〉 | y ∈ x} = x̌.

Proposition 1.2. For every π ∈ Aut(P) and every ẋ ∈ MP, if ẋ ∈ MP
α then

πẋ ∈MP
α.

Proof. By induction on the P-rank of ẋ.

Definition 1.1 (The Forcing Relation). Let ȧ, ḃ ∈MP be two P-names, and
let p be a condition in P.

• p 
 ȧ = ḃ if and only if
For every 〈s, ẋ〉 ∈ ȧ the following set is dense below p:{

q ∈ P
∣∣∣ q ≤ s→ ∃〈r, ẏ〉 ∈ ḃ : (q ≤ r ∧ q 
 ẋ = ẏ)

}
,

and for every 〈r, ẏ〉 ∈ ḃ the following set is dense below p as well:

{q ∈ P | q ≤ r → ∃〈s, ẋ〉 ∈ ȧ : (q ≤ s ∧ q 
 ẋ = ẏ)} .

• p 
 ȧ ∈ ḃ if and only if the following set is dense below p:{
q ∈ P

∣∣∣ ∃ 〈r, ẏ〉 ∈ ḃ : q ≤ r ∧ q 
 ȧ = ẏ
}
.

Of course the above hides an induction on the maximal P-rank of the
names ȧ, ḃ. We now extend this to general formulas by induction on the
complexity of the formula. If ϕ(u), ψ(u) are formulas in the language of
forcing then

• p 
 ϕ ∧ ψ if and only if p 
 ϕ and p 
 ψ.

• p 
 ¬ϕ if and only if there is no q ≤ p such that q 
 ϕ.

• p 
 ∃xϕ(u) if and only if the following set is dense below p:{
q ≤ p

∣∣ ∃ẋ ∈MP : q 
 ϕ(ẋ)
}
.

An interesting remark regarding the definition of p 
 ∃xϕ, is that there
is a very useful lemma (often called The Fullness Lemma, see [Jec03Jec03,
Lemma 14.19]) asserting that p 
 ∃xϕ(u) if and only if there exists a
P-name ẋ such that p 
 ϕ(ẋ). This lemma is in fact equivalent to AC
(see [Mil11Mil11]).

Lemma 1.3 (The Symmetry Lemma). Suppose p ∈ P, π ∈ Aut(P), ẋ a
P-name and ϕ(x) is a formula. Then p 
 ϕ(ẋ) if and only if πp 
 ϕ(πẋ).
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Proof. We prove this by induction on the complexity of ϕ and the P-rank
of ȧ, ḃ. Suppose that p is a condition, ȧ, ḃ are names and π ∈ Aut(P)

p 
ȧ ∈ ḃ

⇐⇒
{
q ∈ P

∣∣∣ ∃ 〈r, ẏ〉 ∈ ḃ : q ≤ r ∧ q 
 ȧ = ẏ
}

is dense below p

⇐⇒
{
πq ∈ P

∣∣∣ ∃ 〈r, ẏ〉 ∈ ḃ : q ≤ r ∧ q 
 ȧ = ẏ
}

is dense below πp

⇐⇒
{
πq ∈ P

∣∣∣ ∃ 〈πr, πẏ〉 ∈ πḃ : πq ≤ πr ∧ πq 
 πȧ = πẏ
}

is dense below πp

⇐⇒
{
q ∈ P

∣∣∣ ∃ 〈r, ẏ〉 ∈ πḃ : q ≤ r ∧ q 
 πȧ = ẏ
}

is dense below πp

⇐⇒ πp 
 πȧ ∈ πḃ.

For more complicated formulas, as well as for p 
 ȧ = ḃ, the argument is
similar.

Definition 1.2. Let G be a group. We say that a non-empty F ⊆ P(G ) is
a normal filter of subgroups if the following holds:

• If H ∈ F then H is a non-trivial subgroup of G .

• If H,K are subgroups of G and H ∈ F and H ≤ K then K ∈ F .

• If H,K ∈ F then H ∩K ∈ F .

• For every π ∈ G and every H ∈ F , π−1Hπ ∈ F .

Suppose that G is a group of permutations of a collection A, and B ⊆
A is a subcollection. We define two subgroups of G : the stabilizer of
B, symG (B) = {π ∈ G | π′′B = B}; and the pointwise stabilizer of B,
fixG (B) = {π ∈ G | ∀b ∈ B : π(b) = b}. If G is clear from context we omit
it and write sym(B) and fix(B).

If G acts on P we extend the above definitions to P-names in a slightly
different manner. For a name ẋ:

• symG (ẋ) = {π ∈ G | π(ẋ) = ẋ}, and

• fixG (ẋ) = {π ∈ symG (ẋ) | ∀ 〈p, ȧ〉 ∈ ẋ : π(ȧ) = ȧ}.

We will never use the first meanings when applying sym or fix to P-names,
only on rare occasions fix will be used for names, and never sym will be
used for arbitrary sets.

Definition 1.3. Let G ∈ M be a group of permutations of P and F a
normal filter of subgroups of G . Let ẋ be a P-name, we say that ẋ is
F -symmetric if symG (ẋ) ∈ F .
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We define by induction the class of hereditarily F -symmetric names,
denoted by HSF :

ẋ ∈ HSF ⇐⇒ {ẏ | ∃p : 〈p, ẏ〉 ∈ ẋ} ⊆ HSF ∧ ẋ is F -symmetric.

As usual if G and F are clear from context we omit them completely.

Proposition 1.4. If ẋ ∈ HSF and π ∈ G then πẋ ∈ HSF .

Proof. We will prove this by induction on the P-rank of ẋ, but first we will
show that sym(πẋ) = π−1 sym(ẋ)π:

σ ∈ sym(πẋ) ⇐⇒ σ(πẋ) = πẋ ⇐⇒ (σπ)ẋ = πẋ

⇐⇒ π−1σπẋ = ẋ ⇐⇒ σ ∈ π−1 sym(ẋ)π.

Since F is a normal filter we have that if sym(ẋ) ∈ F then sym(πẋ) ∈ F
for every π ∈ G . The inductive argument is as usual. Therefore the
proposition holds.

Theorem 1.5. Let G ∈ M be a group of automorphisms of P, and F ∈ M
a normal filter of subgroups. Let G be a P-generic filter over M, and HSF
the class of hereditarily F -symmetric names. We define the interpretation of
HSF by G to be the class N = (HSF)G =

{
ẋG
∣∣ ẋ ∈ HSF

}
and N = 〈N,∈〉,

then M ⊆ N ⊆M[G] and N is a transitive model of ZF.

Before the proof we must remark that the requirement that G ,F are
in the ground model is somewhat essential, otherwise we might be able
to code generic sets via automorphisms in the generic extension and the
names from the ground model will not suffice to construct N.

Proof. We will omit G and F from the notation, as we only have one group
of automorphisms and one filter. From Proposition 1.1Proposition 1.1 we have that for
every x ∈ M, sym(x̌) = G ∈ F therefore M̌ ⊆ HS and so M ⊆ N, it is
also clear that N ⊆M[G].

The transitivity of N is immediate: if y ∈ x ∈ N then there is a name
ẏ and some p ∈ G such that 〈p, ẏ〉 ∈ ẋ, where ẋ ∈ HS. Therefore by the
definition of HS we have that ẏ ∈ HS as so y ∈ N as wanted.

To show that N is a model of ZF we will show that it is almost-universal
and closed under Gödel operations (see [Jec03Jec03, Theorem 13.9]). Recall
that N is almost-universal if for every x ∈ M[G] if x ⊆ N then there is
Y ∈ N such that x ⊆ Y .

To see almost universality holds we will simply show that the set Yα ={
ẋG
∣∣ ẋ ∈ HS ∩MP

α

}
∈ N for all α, then if x ⊆ N then x ⊆ Yα for some α.

Consider the name

Ẏα =
{
ẋ
∣∣ ẋ ∈ HS ∩MP

α

}•
.

Using Proposition 1.2Proposition 1.2 and Proposition 1.4Proposition 1.4 we have that indeed sym(Ẏα) =
G , and Ẏα ⊆ P × HS. It is clear that Ẏ G

α = Yα, and therefore N is almost
universal.
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We recall the Gödel operations:

G1(X, Y ) = {X, Y }
G2(X, Y ) = X × Y
G3(X, Y ) = {〈u, v〉 ∈ X × Y | u ∈ v}
G4(X, Y ) = X \ Y
G5(X, Y ) = X ∩ Y

G6(X) =
⋃

X

G7(X) = dom(X)

G8(X) = {〈u, v〉 | 〈v, u〉 ∈ X}
G9(X) = {〈u, v, w〉 | 〈u,w, v〉 ∈ X}
G10(X) = {〈u, v, w〉 | 〈v, w, u〉 ∈ X}

We observe that if ẋ, ẏ ∈ HS then {ẋ, ẏ}• ∈ HS, so N is closed under
G1(X, Y ); in turn this implies that 〈ẋ, ẏ〉• ∈ HS as well, so for G2 we can
see that the following name is hereditarily symmetric, whose stabilizer
contains sym(ẋ) ∩ sym(ẏ):

{〈1, 〈u̇, v̇〉•〉 | ∃p, q ∈ P : 〈p, u̇〉 ∈ ẋ ∧ 〈q, v̇〉 ∈ ẏ} .

We define similar names for the operations G3, G4, G5, G7, G8, G9, G10.
We only need to verify that N is closed under G6, that is to say, N satisfies
the axiom of union.

Suppose that ẋ ∈ HS, we define the name

Ẏ = {〈r, u̇〉 | ∃p, q ∈ P∃ẏ : 〈p, ẏ〉 ∈ ẋ ∧ 〈q, u̇〉 ∈ ẏ ∧ r ≤ p, q} .

It is immediate that Ẏ ⊆ P × HS, and if π ∈ sym(ẋ) then πẎ = Ẏ , so
sym(ẋ) ≤ sym(Ẏ ), and so Ẏ ∈ HS. To see that Ẏ G =

⋃
ẋG, we see that

u̇G ∈ Ẏ G if and only if for some r ∈ G we have 〈r, u̇〉 ∈ Ẏ if and only
if there is some p, q ∈ P and ẏ ∈ HS such that r ≤ p, q, 〈p, ẏ〉 ∈ ẋ and
〈q, u̇〉 ∈ ẏ. Since G is a filter we have that p, q ∈ G as well, therefore
u̇G ∈ ẏG ∈ ẋG.

Lemma 1.6. Suppose that N is a symmetric extension of M, and A ∈ N,
such that Ȧ ∈ HS is a name of A and fix(Ȧ) ∈ F , then A can be well-ordered
in N.

Proof. In M let 〈ȧα | α < κ〉 be an injective enumeration of all ȧ such that
〈p, ȧ〉 ∈ Ȧ for some p ∈ P. We define the following name

ḟ = {〈α̌, ȧα〉• | α < κ}•

First we claim that ḟ is symmetric. Suppose that π ∈ fix(Ȧ) then
π 〈α̌, ȧα〉• = 〈α̌, ȧα〉•, and therefore π ∈ fix(ḟ). We also have that ḟ ⊆
P ×HS, and therefore ḟ ∈ HS as well.

We see that f = ḟG is a function whose domain is κ, and the range of
f contains A, therefore A can be well-ordered in N as wanted.
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1.2 An Example of a Symmetric Extension

Let M be a transitive model of ZFC, and let λ ≤ κ be two regular cardi-
nals. We will construct a symmetric extension of M in which there exists
a set X such that:

1. ℵ(X) ≤ λ, and

2. κ ≤ ℵ∗(X).

We improve a result by Monro [Mon75Mon75] which assumed that M |= V = L
and λ = ω.

Let P = 〈P,≤〉 be the following notion of forcing: p ∈ P is a function
from κ × κ into 2, such that | dom(p)| < κ, and p ≤ q if and only if q ⊆ p.
Note that by the regularity of κ this forcing is κ-closed, and therefore it
collapses no cardinals below κ+.

It is not hard to see that if G is P-generic over M then in M[G] we
adjoined κ new subsets of κ,

xα =
{
β < κ

∣∣∣ ⋃G(α, β) = 1
}
.

Let ẋα =
{〈
p, β̌
〉 ∣∣ p(α, β) = 1

}
be the canonical name of xα. For the

set X = {xα | α < κ} we give the canonical name Ẋ = {ẋα | α < κ}•. We
remark that 1 
 ẋα 6= ẋβ for α 6= β, by a simple genericity argument.

Let S(κ) denote the group of permutations of κ. For π ∈ S(κ) we define
its action on P as follows:

πp = {〈πα, β, ε〉 | p(α, β) = ε} .

We check how π acts on the ẋα:

πẋα =
{〈
πp, β̌

〉 ∣∣ p(α, β) = 1
}

=
{〈
p, β̌
〉 ∣∣ p(πα, β) = 1

}
= ẋπα.

Therefore ẋα is fixed whenever π ∈ fixS(κ)({α}), and πẊ = Ẋ for every
π ∈ S(κ).

Consider now the filter generated by the ideal [κ]<λ, namely

F =
{
H ≤ S(κ)

∣∣ ∃E ∈ [κ]<λ : fix(E) ≤ H
}
.

We observe that [κ]<λ is λ-closed and therefore F is λ-closed as well.
Let N = (HSF)G. The above shows that ẋα and Ẋ all in HSF , so xα

is in N as well as X. We will show that in N it is true that κ ≤∗ X and
λ � X, these two imply that N 6|= AC, since in ZFC if λ ≤ κ ≤∗ X then
we have that λ ≤ X.

In the next section we see prove that in fact λ = ℵ(X) in N, it will be
an immediate consequence of Lemma 1.9Lemma 1.9.

To see that λ � X, suppose that ḟ was a hereditarily symmetric name
for an injective function from λ into X, and let E ∈ [κ]<λ such that when-
ever π ∈ S(κ) and π�E= idE we have πḟ = ḟ .
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Suppose that p 
 ḟ : λ̌→ Ẋ is injective, let q ≤ p be an extension such
that for some α /∈ E we have that q 
 ḟ(γ̌) = ẋα, for some γ < λ. Take
β /∈ E such that there is no τ < κ for which 〈β, τ〉 ∈ dom(q), we can find
such β since | dom(q)| < κ. Let π be the permutation such that π(α) = β
and π(β) = α, and π(τ) = τ otherwise. It is clear that π ∈ fix(E) and
therefore πḟ = ḟ .

To see that πq is compatible with q, note that 〈δ, τ〉 ∈ dom(q)∩dom(πq)
then δ /∈ {α, β} and therefore πq(δ, τ) = q(δ, τ). On the other hand πq 

ḟ(γ̌) = ẋβ. Take r ≤ q, πq; then r 
 ẋα = ḟ(γ̌) = ẋβ ∧ ẋα 6= ẋβ, which is a
contradiction.

On the other hand, we will construct in N a function from X onto κ
defined as follows:

f(x) = min {β < κ | β /∈ x} .

This function is definable in N, and it is well-defined since x 6= κ for all
x ∈ X. Genericity implies that f is surjective, since for every β < κ if
p ∈ P , letting α < κ be such that for all 〈γ, δ〉 ∈ dom(p) we have γ 6= α,
we can extend p to q = p ∪ {〈α, γ, 1〉 | γ < β} ∪ {〈α, β, 0〉}.

We remark that if κ+ was not collapsed (e.g. κ<κ = κ) then it is clear
that there is no function from X onto κ+ in M[G] and therefore there is
no such function in N, and so ℵ∗(X) = κ+.

1.3 Choice Principles
We say that a sentence in the language of set theory ϕ is a choice principle
if it is provable from ZFC, but not from ZF11. There is a plethora of choice
principles in different areas of mathematics, but we will focus our interest
on three particular families of choice principles defined below.

Definition 1.4. Let κ be an ℵ cardinal. We define the following axioms:

DCκ For every binary relation R, if X is such set that for every α < κ
and every α-sequence in X (f : α → X), there is some x ∈ X
such that fRx, then there is a κ-sequence f in X, such that for
all α < κ, (f� α)Rf(α).

ACκ Every family of κ many non-empty set has a choice function.

Wκ Every infinite set is either well-ordered or has a subset of size κ.

It is clear that ACκ is simply a restriction of AC to families of size κ,
and Wκ is the restriction of the well-ordering principle to sets of size κ.
However it is not clear where DCκ is coming from. The best way to under-
stand it is to think of it as a restricted version of Hausdorff’s maximality
principle, to maximal chains of length κ. However an equivalent formula-
tion of DCκ which may be a bit clearer is actually the restriction of Zorn’s
lemma to chains of length κ (see [HR98HR98, Forms 87, 87(A)]):

1This is not a canonical definition, see http://mathoverflow.net/questions/104016http://mathoverflow.net/questions/104016
for a related discussion.

http://mathoverflow.net/questions/104016
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Theorem 1.7. DCκ is equivalent to the assertion that for every partially
ordered set 〈P,≤〉 in which every well-ordered chain is of order-type < κ and
has an upper bound, then P has a maximal element.

See [Wol83Wol83] for the proof.
We abbreviate by DC<κ the statement (∀λ < κ)DCλ. Similarly for W<κ

and AC<κ. We will give the proof of the following theorem describing the
implications between the above principles, as it appears in [Jec73Jec73, Theo-
rem 8.1], the following theorem and proof are due to Lévy (see [Lév64Lév64]).

Theorem 1.8. Let κ be an ℵ cardinal, the following implications hold in ZF:

(a) If λ < κ then DCκ implies DCλ, Wκ implies Wλ, and ACκ implies ACλ.

(b) DCκ implies both Wκ and ACκ.

(c) (∀κ)DCκ and (∀κ)Wκ both imply AC.

(d) If κ singular then DC<κ implies DCκ, and AC<κ implies ACκ.

(e) If κ is a limit cardinal then W<κ and ACcf(κ) imply Wκ, in particular
ACℵ0 implies Wℵ0 .

Proof. (a) It is clear that Wκ implies Wλ, and ACκ implies ACλ. To see
that DCκ implies DCλ, suppose that R is a binary relation and X a
non-empty set such that whenever α < λ and g is an α-sequence in
X there is some x ∈ X such that gRx. Fix x0 ∈ X and extend R to R′

such that whenever g is an α-sequence, for λ ≤ α < κ, it holds that
gR′x0. We have that R′ satisfies the assumptions needed for using
DCκ.

DCκ asserts the existence of a κ-sequence, such that for all α < κ,
(f� α)R′f(α). Observe that if α < λ then (f� α)Rf(α), therefore f�λ
is a λ-sequence needed to prove DCλ holds.

(b) Assume DCκ holds, suppose that X is such that |X| ≮ κ, let R be
the relation defined on α-sequences in X for α < κ, where sRx if
and only if x /∈ rng(s). Since κ ≮ |X| for every s we can add another
point x. By DCκ we have that there is a κ-sequence f such that
(f� α)Rf(α), i.e. f is injective, and therefore κ ≤ |X|.
The proof of ACκ is similar: let A = {Aα | α < κ} be a family of non-
empty sets, |A| = κ. We define R to be such that whenever α < κ
and f an α-sequence in

⋃
A such that f(γ) ∈ Aγ for all γ < α; for

a ∈
⋃
A we have that fRa if and only if a ∈ Aα. Since Aα is non-

empty we can always find such a. It is clear that f given by DCκ is a
choice function from the family A.

(c) By the above we have that (∀κ)DCκ implies that (∀κ)Wκ, and if the
latter holds then every set can be compared with its Hartogs number,
therefore the well-ordering principle holds.
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(d) Suppose now that κ is singular, cf(κ) = µ. Let {κξ | ξ < µ} be a
cofinal and increasing sequence of cardinals below κ.

Suppose DC<κ holds. Let R be a binary relation and X non-empty
such that whenever α < κ and f : α → X there is some x ∈ X such
that fRx. By DC<κ, for every λ < κ we have f : λ → X witnessing
DCλ. Let T be the set of all functions from κξ into X for ξ < µ. For
an α-sequence s in T , letting st the concatenation of all the terms in
s, then st is also a γ-sequence in X for some γ < κ.

We define R′ to be such that if t is a ξ-sequence in T for ξ < µ,
and z ∈ T then tR′z if and only if z is a κξ-sequence in X and
t_(z � η)Rz(η) for all η < κξ. Since DC<κ holds we can always
extend ξ-sequences. Using DCµ we have t a µ-sequence in T such
that st is a κ-sequence in X as wanted.

Now suppose that AC<κ holds, consider the family A = {Aα | α < κ}
where Aα 6= ∅ for all α. Let Cξ be the collection of choice functions
on the family {Aα | κξ ≤ α < κξ+1}, by the assumption of ACκξ+1

those are non-empty and by ACµ we can choose a fξ ∈ Cξ, the union⋃
{fξ | ξ < µ} is a choice function from A itself.

(e) Lastly, if κ is a limit cardinal with cofinality µ, and both W<κ and ACµ

hold let {κξ | ξ < µ} be an increasing cofinal sequence of cardinals in
κ. Suppose now that X is a set such that |X| ≮ κ. By W<κ for every
κξ there is a subset of X of size κξ. For ξ < µ let Cξ be the family of
pairs (A,R), A ⊆ X, where |A| = κξ and R is a well-order of A of
type κξ, by the assumption this set is non-empty. Using ACµ we can
choose Aξ and a well-ordering of it. Let A =

⋃
ξ<µAξ ⊆ X, this is a

well-ordered union of enumerated sets which is itself well-ordered
and of size κ as wanted.

Two immediate corollaries from the above are that if λ is the first ℵ
cardinal for which DCλ (or ACλ) fails then λ is regular, and that if W<λ

holds and A is not well-orderable then ℵ(A) ≥ λ.
We will now proceed to prove a certain link between the construction

of symmetric extensions and DC<κ.

Lemma 1.9. Let M be a transitive model of ZFC, P a κ+-closed notion of
forcing in M. Let M[G] be a generic extension by a P-generic filter. Suppose
that N ⊆M[G] is a symmetric extension of M generated by P and a normal
filter of groups F . If F is κ+-closed then the symmetric model satisfies DCκ.

Proof. Suppose that X ∈ N is a non-empty set, and R a binary relation
such that for every Y ⊆ X such that |Y | < κ we have some x ∈ X such
that Y Rx. As M[G] |= AC, there exists (in M[G]) a function f : κ → X
such that for all α < κ it holds that {f(β) | β < α}Rf(α).

Let ḟ0 be a name for the function f , and let p be a condition which
forces that ḟ0 is a function whose domain is κ, and its range is a subset of
N. Let pα be a sequence of conditions such that pα ≤ pβ for β < α, and
pα 
 ḟ0(α̌) = ẋα for some ẋα ∈ HS. By κ+-closure of P we have that the
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sequence can be defined at limit ordinals and at κ, so we have q = pκ ≤ pα
for all α < κ. We have that q 
 ḟ0(α̌) = ẋα for all α < κ.

Define the name ḟ = {〈α̌, ẋα〉• | α < κ}•, it is clear that q 
 ḟ = ḟ0.
From κ+-closure of F we have that⋂

α<κ

sym(ẋα) = H ∈ F .

It follows that ḟ is fixed pointwise by H, and every name appearing in
ḟ is in HS. Therefore ḟ hereditarily symmetric, so it is indeed in N as
wanted.

It is not hard to observe that we in fact proved more than the above
lemma, in fact we proved the following claim:

Claim. Suppose the conditions of Lemma 1.9Lemma 1.9 hold, and A ∈ M[G] is such
that |A|M[G] < κ+ and A ⊆ N, then A ∈ N.

By the above lemma, in the model constructed in section 1.2section 1.2 DC<λ

holds, and thus W<λ. In particular this means that λ ≤ ℵ(X). Since we
have shown that ℵ(X) ≤ λ, equality follows.

Theorem 1.8Theorem 1.8 tells us that indeed (∀κ)DCκ and (∀κ)Wκ are equivalent
to the axiom of choice, and therefore to each other. However the re-
lationships between the three restrictions are not as trivial as they may
appear at first glance. We quote several theorems describing some of the
more surprising results in this context. For a full treatment of the subject
see [Jec73Jec73, Chapter 8].

Theorem 1.10. The following statements are true in ZF:

(a) (∀κ)ACκ implies DCℵ0.

(b) There is a model in which (∀κ)ACκ holds, but DCℵ1 and Wℵ1 both fail.

(c) Let κ be a regular cardinal, then there is a model in which AC<κ and
W<κ both hold, but DCℵ0 fails.

(d) Let κ be a regular, then there is a model of ZF + DC<λ, but ACλ fails
on a family of pairs, and Wλ fails.

(e) Let κ be a singular with cofinality µ, then there is a model in which
DC<µ,AC<µ and W<κ hold, but ACµ and Wκ fail.

We conclude this section with a question, which naturally rises from
the proof of Lemma 1.9Lemma 1.9:

Question. Suppose that N is a symmetric extension of M by a κ+-closed
P and a filter F . If N |= DCκ, does that mean that F is κ+-closed?
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1.4 2-Permutations and Affine Ideals

We will now define two related notions, 2-permutations (Definition 1.5Definition 1.5)
and affine-ideals (Definition 1.7Definition 1.7) which will be used to generate symmet-
ric models. The motivation is to somehow create a system of permutations
of A × B where the permutations of A are “more important” and set the
tone.

The main motivation is to later define a notion of forcing which has
canonical names indexed by A×B where A is endowed with an additional
structure. Using 2-permutations we will ensure the preservation of the
structure from A to a generic set in the symmetric extension.

Definition 1.5. Let A,B be two non-empty sets, GA and GB groups of
permutations of A and B respectively. A 2-permutation in GA and GB is
a pair 〈σ, π〉 such that σ ∈ GA, and π : A → GB, we shall denote π(a) by
πa. If GA and GB are clear from context then we will simply refer to it as
a 2-permutation of A and B, or just 2-permutation.

If Σ = 〈σ, π〉 is a 2-permutation its action on A×B is a permutation of
A×B defined as: Σ(a, b) = 〈σa, πab〉.

Proposition 1.11. Let A,B be two non-empty sets and GA, GB groups of
permutations of A and B respectively. Let Σ1,Σ2,Σ3 be 2-permutations in
GA and GB, then:

(a) Σ1 and Σ2 act on A×B the same way if and only if Σ1 = Σ2.

(b) The composition Σ2 ◦ Σ1 as permutations is a 2-permutation.

(c) (Σ3 ◦ Σ2) ◦ Σ1 = Σ3 ◦ (Σ2 ◦ Σ1).

(d) The identity function of A×B is a 2-permutation.

(e) If Σ is a 2-permutation then Σ−1 is a 2-permutation.

Proof. Let us denote Σi = 〈σi, πi〉 for i = 1, 2, 3 and πia = πi(a) for a ∈ A.

(a) It is clear that if Σ1 = Σ2 then they act the same way on A × B.
Suppose now that Σ1 6= Σ2. If σ1 6= σ2 then there is some a ∈ A
such that σ1(a) 6= σ2(a). In this case for any pair 〈a, b〉 we have
that Σ1(a, b) 6= Σ2(a, b). The other case is that for some a ∈ A we
have π1

a 6= π2
a, so for some b ∈ B those differ and we have that

Σ1(a, b) 6= Σ2(a, b) as wanted.

(b) We proceed to verify that the composition is a 2-permutation. Take
a pair 〈a, b〉 ∈ A×B,

Σ2 ◦ Σ1(a, b) = Σ2(Σ1(a, b))

= Σ2(σ1(a), π1
a(b))

=
〈
σ2σ1(a), π2

σ1(a)π
1
a(b)

〉
,



1.4 2-Permutations and Affine Ideals 15

therefore the 2-permutation 〈σ, π〉, σ = σ2σ1 and πa = π2
σ1(a)π

1
a, have

the same action on A × B as Σ2 ◦ Σ1, so they are equal and the
composition is well-defined.

(c) The composition is associative since the composition of permuta-
tions is associative. Since a composition of 2-permutations is a 2-
permutation, and Σ3◦(Σ2◦Σ1) acts the same on A×B as (Σ3◦Σ2)◦Σ1

we have that they are indeed equal as 2-permutations.

(d) We define the 2-permutation ID =
〈
idA, π

idB
〉
, where πidB

a = idB for
all a ∈ A. If 〈a, b〉 ∈ A × B is any pair then ID(a, b) = 〈a, b〉 and
therefore this is indeed idA×B as wanted.

(e) Lastly if Σ = 〈σ, π〉 is a 2-permutation, we define Σ∗ to be the 2-
permutation 〈σ−1, ρ〉 such that ρa = π−1

σ−1(a). For a pair 〈a, b〉 we
have:

(Σ ◦ Σ∗) (a, b) = Σ
(
σ−1(a), π−1

σ−1(a)(b)
)

=
〈(
σσ−1

)
(a),

(
πσ−1(a)πσ−1(a)

)
(b)
〉

= 〈a, b〉 .

Therefore Σ ◦ Σ∗ is the identity, and Σ∗ = Σ−1 as wanted.

We therefore proved that given non-empty sets A,B and permuta-
tion groups GA, GB, the collection of all 2-permutations forms a group
of permutations of A × B, and we can now simply talk about groups of
2-permutations. We remark that if both sets have more than one element
then not every permutation of A × B is a 2-permutation, although this is
of no consequence in our case.

Since we would like to use 2-permutations for automorphisms of the
forcing poset, we might as well define a matching notion of ideal of sup-
ports as a mean of generating a normal filter of subgroups.

Definition 1.6. Let A and B be non-empty sets, and let ? be an element
not in B. We define the ?-product of A and B to be A?B = A×(B∪{?}).

If E ⊆ A?B we shell denote by EA the projection of E onto A, namely
{a ∈ A | ∃b ∈ B ∪ {?} : 〈a, b〉 ∈ E}, and for every a ∈ A we shall denote
by Ea the set {b ∈ B | 〈a, b〉 ∈ E} which is the section of E at a without,
perhaps, the ? element.

The reason we added ? into the game is that later we will want to talk
about E such that EA 6= ∅ but for all a ∈ A, Ea = ∅, and this is impossible
to achieve if we require E ⊆ A×B.

We may assume as well that ? is fixed throughout the entire discussion
and does not appear in any set except ?-products, so it is meaningful to
write A ?∅ ⊆ A ? B.

If Σ = 〈σ, π〉 is a 2-permutation of A and B then Σ acts on A ? B the
same way it does on A×B with the addition that Σ(a, ?) = 〈σa, ?〉.
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Definition 1.7. Let A,B be non-empty sets, I ideal on A containing all
the singletons, and J ideal on B containing all the singletons.

I ? J =
{
E ⊆ A ? B

∣∣ EA ∈ I ∧ ∀a ∈ A : Ea ∈ J
}

is called the affine ideal on A ? B generated by I and J .
If M is a group of 2-permutations of A and B, we say that I ? J is

normal in M if for every Σ ∈M and every E ∈ I ?J we have Σ′′E ∈ I ?J .

We first observe that if E ∈ I ? J , and a /∈ EA then automatically
Ea = ∅, and therefore it is in J . It is not hard to see that I ? J is an ideal
over A?B, and that if I and J are both λ-closed then I ?J is λ-closed. The
last thing remains to be proved before this can be applied to symmetric
forcing is that normal ideals generate normal filters of subgroups.

Proposition 1.12. Let A and B be non-empty sets, and let M be a group
of 2-permutations of A and B, and I ? J an affine ideal on A ? B which is
normal in M . Then the set

F = {H ≤M | ∃E ∈ I ? J : fixM (E) ≤ H}

is a normal filter of subgroups of M . Furthermore, if I is λ-complete then F
is λ-complete.

Proof. We will omit M from the notation in the following proof. First we
see that if H ∈ F then there exists E ∈ I ? J such that fix(E) ≤ H and
therefore if H ≤ K then fix(E) ≤ K and so K ∈ F ; this also implies that
M ∈ F as well.

To show closure under conjugation it suffices to show that if Λ ∈ M
then Λ fix(E)Λ−1 = fix(Λ′′E), and from the normality of I ? J we have
that Λ′′E ∈ I ? J . Suppose now H ∈ F , then for some E ∈ I ? J we
have fix(E) ≤ H and therefore for every Λ ∈M , fix(Λ′′E) ≤ ΛHΛ−1, and
therefore ΛHΛ−1 ∈ F .

Let Σ ∈ fix(E), and 〈a, b〉 ∈ Λ′′E, then Λ−1(a, b) ∈ E, so

ΛΣ
(
Λ−1(a, b)

)
= ΛΛ−1(a, b) = (a, b)

and ΛΣΛ−1 ∈ fix(Λ′′E). The proof in the other direction is similar.
Lastly we will show that the completeness of I ? J is the completeness

of F . Let µ be the completeness of I ? J , namely for every γ < µ and
{Eα ∈ I ? J | α < γ} we have that E =

⋃
{Eα ∈ I ? J | α < γ} ∈ I ? J .

Suppose that Hα ∈ F for α < γ and let fix(Eα) ≤ Hα. Since fix(E) ≤
Hα for all α, it is also a subgroup of the intersection, and since E ∈ I ? J
we have the wanted intersection in F .



2
Läuchli Spaces and Weak Choice

Läuchli proved in the early 1960’s that it is consistent relative to ZF with-
out the axiom of foundation that there exists a vector space which has no
basis, but every proper subspace is of finite dimension. He also proved
that the only endomorphisms of this vector space are scalar multiplica-
tions from the field (see [Läu63Läu63]). His proof was easily transferred to a
proof in ZFA, but due to the methods of his construction there were two
main limitations: it was restricted to models with atoms or with sets of
the form x = {x}, and limited only to countable fields.

While the first limitation on atoms was remedied with the Jech-Sochor
embedding theorem [Jec73Jec73, Chapter 6] and its various refinements (e.g.
[Pin72Pin72]), the size of the field was not at all improved. In this chapter we
present a new proof using a forcing argument based on Läuchli’s original
proof. We improve his results in two essential ways: the size of the field
is no longer limited to a countable field, and for every cardinal µ we can
construct a model which satisfies DCµ (see Theorem 2.5Theorem 2.5).

2.1 Strange Vector Spaces
Before attempting to improve Läuchli’s result, we first clearly state what
is a vector space, and explore some of the implications of Läuchli’s result.
In our context a vector space is a quadruple 〈V, F,+, ·〉 such that the fol-
lowing axioms are true: 〈V,+〉 is an abelian group, 〈F,+, ·〉 is a field, and
V is a module over F , namely we are allowed to multiply elements of F
by elements of V . In this case we say that V is a vector space over F . We
will abuse the language and notation and denote the vector space as V ,
intermittently remembering and forgetting about F , which will be called
the field of V .

The endomorphisms of V are the homomorphisms from 〈V,+〉 to itself
which respect scalar multiplication. We denote this ring as End(V ), and
its group of its invertible elements by Aut(V ).

We say that a vector space V is a Läuchli space if End(V ) is a field. In
such case the action of an endomorphism on V is exactly a scalar multi-
plication, so we can think of V as a vector space over End(V ). In ZFC we
have that V is a Läuchli space if and only if End(V ) is the field of V and
dimV = 1, because every vector space of dimension greater than 1 has
a non-scalar endomorphism. In the case where End(V ) 6= V we will say
that V is a non-trivial Läuchli space.

17
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We say that a vector space V over a field F is indecomposable over F
if whenever V = W1⊕W2, either W1 = {0} or W1 = V . It is not hard to see
that in ZFC, V is indecomposable over F if and only if V = F . We will say
that V is a totally indecomposable space over F if V is indecomposable
over F and V 6= F .

Theorem 2.1. If V is a non-trivial Läuchli space then V is totally indecom-
posable over End(V ).

Proof. Assume that V is not totally indecomposable over End(V ), then
there are two proper subspaces W1,W2 such that V = W1 ⊕W2. In this
case every x ∈ V has a unique decomposition x1 + x2 where xi ∈ Wi. Let
T be the linear operator Tx = x1. Then kerT = W2 which is a non-trivial
subspace, and since W1 6= {0} as well we have that T is not zero nor is it
invertible in End(V ) which is to say that V is not Läuchli.

Theorem 2.2. If V is totally indecomposable over F then V ∗ = {0}.

Proof. Suppose by contradiction that ϕ is a non-zero linear functional, and
let v ∈ V be such that ϕ(v) = 1. First we note that there is a non-zero
w ∈ V such that ϕ(w) = 0, else ϕ is injective which is impossible since
V 6= F .

For every x ∈ V we can write x = (x− ϕ(x)v) + ϕ(x)v, that is, we can
decompose V = kerϕ⊕span({v}), which is a contradiction to the fact that
V is totally indecomposable.

Theorem 2.3. if V is totally indecomposable over F then V does not have a
basis (as a vector space over F ).

Proof. If B is a basis, since V 6= F we know that B contains at least two
elements. Let b ∈ B an arbitrary element, then V = span(B \ {b}) ⊕
span({b}).

Alternatively we can see that the function φ : B → F such that φ(b) = 1
and φ(x) = 0 for x 6= b can be extended to a non-trivial linear functional,
in contradiction to the previous theorem.

Whether or not every totally indecomposable space is Läuchli is an
open question (see section 2.3section 2.3). The other implications are not reversible
in ZF, as the following example shows.

Example 2.4. Suppose that V is a non-trivial Läuchli space, thenW = V⊕V
is not a Läuchli space, however W ∗ = {0}.

To see that W is not a Läuchli space observe that the projection onto the
first direct summand is a non-invertible non-zero endomorphism. Therefore
End(W ) is not a field. Consider W as a vector space over End(V ) then it is
trivial to see that W is decomposable.

On the other hand suppose that ϕ : W → End(V ) is a linear functional,
then we can restrict it to each of the direct summands, this restriction is zero
and therefore ϕ is zero as well.
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2.2 Constructing a Läuchli Space
Läuchli proved that it is consistent with to ZF that there exists a non-
trivial Läuchli space over a countable field, and that every proper subspace
of it has a finite dimension. In such model DCℵ0 fails, and one may ask
whether or not DCℵ0 could prove there are no non-trivial Läuchli spaces.
This could be done, for example, by proving that ZF + DCℵ0 proves that
every non-zero vector space has a non-zero linear functional.

We show that in fact for any cardinal µ, it is consistent with ZF + DCµ

that a non-trivial Läuchli space exists.

Theorem 2.5. Assuming ZFC is consistent, then for every field F and every
cardinal µ we can construct a model of ZF + DCµ in which there exists a
non-trivial Läuchli space V over F .

Of course that in the model we will construct AC will fail. We begin by
deducing an immediate corollary from this and the theorems presented in
the previous section:

Corollary 2.6. For every cardinal µ, ZF + DCµ cannot prove that for every
non-zero vector space there is a non-zero functional.

Let M be a transitive model of ZFC. Fix a field F in M, and let λ be
a regular cardinal. We will construct a symmetric extension N of M, in
which DC<λ holds, but DCλ fails. In N there is a Läuchli space V such
that End(V ) = F, and every proper subspace of V has dimension < λ.
Setting λ > µ will prove the theorem, since DC<λ implies that DCµ holds
as well, as we wish to show.

The idea of the proof is to add generic subsets to a large enough cardi-
nal, and to index these subsets using a vector space of a suitable dimension
which will be the mould for V . We will then use the automorphisms of the
vector space to generate 2-permutations of the forcing, and this way en-
sure the preservation of the structure defined by the indexing when pass-
ing down to the symmetric extension. We wish to exclude “large enough”
subspaces, so we will use an affine ideal whose main component is that
of small-enough subsets. The resulting generic vector space has the de-
sired properties, and will be in the symmetric model due to the choice of
automorphisms.

Let κ be a regular cardinal such that κ > |F| and κ ≥ λ. Fix an arbitrary
V ∈ M a vector space over F such that dimV = κ. The cardinality of V
itself is κ, since we have a basis B ⊆ V of cardinality κ and every v ∈ V
is a unique finite sum of elements from B with non-zero coefficients from
F. Therefore V is equinumerous with the set [B × (F \ {0})]<ω, whose
cardinality is [κ]<ω = κ.

Let P = 〈P,≤〉 be the following notion of forcing: p ∈ P is a partial
function from (V × κ)× κ into {0, 1}, such that | dom p| < κ. P is ordered
by reverse inclusion, that is p ≤ q if and only if q ⊆ p.

Proposition 2.7. P does not add new subsets to any ordinal α < κ, and P
preserves cardinalities and cofinalities below κ+.
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Proof. κ is regular and therefore P is κ-closed, because the union of an
increasing sequence of < κ conditions is itself a condition in P. Therefore
no new bounded subsets of κ are added, and in particular if α < κ and ḟ
is a name for a function whose domain is α then 1 
 ∃g ∈M : ḟ = g, and
so κ and smaller cardinals are preserved.

We remark that |P | = κ<κ, and if it happens that |P | = κ then no
cardinals are collapsed at all.

If G is a P-generic filter over M then
⋃
G = fG is a function from

(V × κ)× κ into 2.
We give canonical names for the following:

• The generic subset of κ, av,β = {γ | fG(v, β, γ) = 1}, has the name
ȧv,β = {〈p, γ̌〉 | p(v, β, γ) = 1};

• the set xv = {av,β | β < κ} we has the name ẋv = {ȧv,β | β < κ}•;

• and X = {xv | v ∈ V } has the name Ẋ = {ẋv | v ∈ V }•.

We remark that for distinct 〈v1, β1〉 , 〈v2, β2〉 ∈ V × κ, av1,β1 6= av2,β2, as
well as for two distinct v, u ∈ V we have xv 6= xu.

There exists a natural vector space over F structure on X, defined by
the bijection v 7→ xv. We give names to the addition and scalar multipli-
cation defined this way:

• Addition has the name ˙add = {〈ẋv, ẋu, ẋw〉• | V |= v + u = w}•.

• For every a ∈ F we define ȧ = {〈ẋv, xw〉• | V |= a · v = w}•.

Let G ∈ M be the group of 2-permutations of V and κ in Aut(V ) and
S(κ), where S(κ) is the group of all permutations of κ. Given Σ a 2-
permutation in G , it acts on P by operating on the first two coordinates,
namely Σp = {〈Σ(v, β), γ, ε〉 | 〈〈v, β〉 , γ, ε〉 ∈ p}.

Let I ∈ M be the affine ideal [V ]<λ ? [κ]<κ. Recall that λ is a regular
cardinal for which we want to have that DC<λ holds, but DCλ fails. I is
normal in G since permutations preserve cardinality. Let F be the normal
filter of subgroups generated by I in G , and let N ⊆M[G] be (HSF)G. We
will show that N is a symmetric model with the promised properties.

If A ∈ N and Ȧ is a hereditarily symmetric name for A, we say that
E ∈ I is a support of Ȧ if fixG (E) ≤ symG (Ȧ). Since G is the only group
of permutations we will deal with, we will omit it from the notation and
simply write fix(E), sym(Ȧ), etc.

Proposition 2.8. I is λ-complete.

Proof. Suppose we are given a set {Eα ∈ I | α < γ} for some γ < λ. We
wish to show that E =

⋃
α<γ Eα ∈ I. Namely that EV ∈ [V ]<λ and Ev ∈

[κ]<κ for all v ∈ V .
The first set is a projection of a union, therefore it is the union of

projections EV
α , which is in [V ]<λ. For v ∈ V we observe that Ev is again

the union of (Eα)v which is a union of < κ sets of size < κ and so Ev ∈
[κ]<κ for all v ∈ V .
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We therefore have the following corollary:

Corollary 2.9. N |= DC<λ

Proof. By Proposition 2.8Proposition 2.8 and Proposition 1.12Proposition 1.12 we have that F is λ-closed,
and thus by the fact P is κ-closed (therefore also λ-closed) and Lemma 1.9Lemma 1.9
N |= DC<λ, furthermore since P does not collapse any cardinal up to κ this
is truly DC<λ, as wanted.

Proposition 2.10. If Σ = 〈T, π〉 ∈ G then Σȧv,β = ȧΣ(v,β), and Σẋv = ẋTv.

Proof. Let Σ ∈ G as above, then:

Σȧv,β = {〈Σp, γ̌〉 | p(v, β, γ) = 1}
= {〈p, γ̌〉 | p(Σ(v, β), γ) = 1} = ȧΣ(v,β),

therefore we have:

Σẋv =
{
ȧΣ(v,β)

∣∣ β < κ
}•

= {ȧTv,β | β < κ}• = ẋTv.

Corollary 2.11. For every v ∈ V and β ∈ κ the following names are hered-
itarily symmetric: ȧv,β, with a support {〈v, β〉}; ẋv with a support {v} ? ∅;
and Ẋ as well as the names of the vector space operations are hereditarily
symmetric with empty support.

Proof. From Proposition 2.10Proposition 2.10 above we have that ȧv,β is fixed whenever
Σ(v, β) = 〈v, β〉 and thus hereditarily symmetric (all the names inside are
canonical names for elements of M), similar argument holds for ẋv (all
the names are ȧv,β).

By this we have that Ẋ, ȧ and ˙add are also hereditarily symmetric,
since for every Σ ∈ G , if Σ = 〈T, π〉 then:

Σ ˙add = {〈ẋTv, ẋTu, ẋTw〉• | V |= v + u = w}• .

However since T is linear we have that V |= v + u = w ⇐⇒ V |=
Tv + Tu = Tw, so we are done.

We denote by ˙V the name of the vector space generated by the above
operations, and if V = ˙V G then we have that V ∈ N. For W ⊆ V ,
W ∈ M, let Ẇ = {ẋw | w ∈ W}• be the natural name of W . Clearly
if W is a subspace then Ẇ G = W is a subspace of V . Furthermore if
dimW < λ, letting B be a basis for W , then fix(B ?∅) is a support for W ,
since every linear T fixing B pointwise must fix W pointwise.

Lemma 2.12. Let T ∈ Aut(V ) and E ∈ I be such that T �EV = idEV , then
for every q ∈ P there is Σ ∈ fix(E) such that Σ = 〈T, π〉 and Σq is compatible
with q.

Proof. Let W be the span(EV ). Since T is linear we have that T�W= idW .
Fix q ∈ P, we next define πv for v ∈ V :

• If v ∈ W then πv = idκ.
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• Otherwise, let ε = sup {β + 1 | ∃z∃γ : 〈z, β, γ〉 ∈ dom q} and define:

πv(β) =


ε+ β β < ε

β′ β = ε+ β′, β′ < ε

β β ≥ ε+ ε

To see that Σ ∈ fix(E) we note that if 〈a, b〉 ∈ E then a ∈ EV and
therefore Σ(a, b) = 〈a, b〉.

Let Σ be 〈T, π〉, and suppose that 〈w, β, γ〉 ∈ dom(q) ∩ dom(Σq), then
β < ε and so w ∈ W , and therefore Σ(w, β) = 〈w, β〉. By the definition of
how Σ acts on P we have that q(w, β, γ) = Σq(w, β, γ), therefore q and Σq
are compatible as wanted.

Corollary 2.13. Suppose that W is a subspace of V and dimW < λ, u, v ∈
V \W and q ∈ P. Then there exists Σ ∈ G such that Σẋv = ẋu and Σq is
compatible with q.

Proof. It is enough to exhibit a linear operator T such that T �W is the
identity function and Tv = u, since by Proposition 2.10Proposition 2.10 every Σ such that
Σ = 〈T, π〉 will have the property Σẋv = ẋu, and by Lemma 2.12Lemma 2.12 there is a
Σ with Σq compatible with q.

Let B be a basis of W , then |B| < λ, so B ? ∅ ∈ I. Extend B to a
basis B1 such that v ∈ B1 and a basis B2 such that u ∈ B2. Let τ be any
bijection of B1 onto B2 such that τ �B= idB and τv = u. Define T as the
unique extension of τ to a linear automorphism, then T is as needed.

Theorem 2.14. Suppose that A ∈ N and A ⊆ V , then there exists a sub-
space W of V , such that dim W < λ and either A ⊆ W or V \ A ⊆ W .

Proof. Let Ȧ be a symmetric name for A and E a support of Ȧ. Let W
be the span of EV and Ẇ the natural name of W . We will show that if
p 
 Ȧ * Ẇ then p 
 ˙V \ Ȧ ⊆ Ẇ , the other case where p 
 ˙V \ Ȧ * Ẇ
follows by changing the roles of A and V \ A.

If p 
 Ȧ ⊆ Ẇ then we are done, similarly if p 
 ˙V \ Ȧ ⊆ Ẇ . Assume
towards contradiction that p 
 Ȧ * Ẇ and p 6
 ˙V \ Ȧ ⊆ Ẇ . Let q ≤ p

such that q 
 ˙V \ Ȧ * Ẇ . We can therefore find u, v ∈ V \W such that
an extension of q forces ẋu ∈ Ȧ and ẋv /∈ Ȧ. Without loss of generality, q
already forces this.

Let Σ be a 2-permutation as guaranteed by Corollary 2.13Corollary 2.13 which fixes
E, and such that Σẋu = ẋv.

Since q 
 ẋu ∈ Ȧ we have that Σq 
 ẋv ∈ Ȧ, by Lemma 2.12Lemma 2.12 these are
compatible conditions which yields a contradiction as they force contra-
dictory statements.

We deduce several corollaries on the structure of subspaces of V . First
we remark that it holds in ZF that if U is a vector space over a field F ,
and F is well-orderable, and moreover U has a well-orderable basis B,
then U itself is well-orderable. This follows from the bijection between
U and finite subsets of B × (F \ {0}). We further remark that if U is a
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well-orderable vector space then the ZFC theorems about U are true (it
has a basis; every subspace has a basis and a direct complement; etc.).

Proposition 2.15. If A ⊆ V is such that span(A) = V , then |A|M[G] = κ.

Proof. By Proposition 2.7Proposition 2.7, P does not collapse cardinals below κ+, there-
fore in M[G] the dimension of V is κ, and so the dimension of V in M[G]
is κ as well. Therefore if A ∈M[G] is a spanning set then |A|M[G] = κ.

Corollary 2.16. Let W ∈ N be a subspace of V , then W = V or dim W < λ.

Proof. Let W be a proper subspace of V . Pick v ∈ V \ W and define
A = v + W = {v + w | w ∈ W }. Since A ∩ W = ∅, by Theorem 2.14Theorem 2.14 we
have that there is a subspace W0 ⊆ V such that dim W0 < λ and A ⊆ W0

or W ⊆ W0.
If W ⊆ W0 then by the remark above about well-ordered spaces we

have that dim W ≤ dim W0 < λ. If A ⊆ W0 then by the fact that v ∈ W0 and
that it is a subspace we have that −v ∈ W0. Therefore −v + A = W ⊆ W0

and the conclusion holds.

Corollary 2.17. V has no basis in N.

Proof. Suppose that B ∈ N is a linearly independent subset of V , pick
some b ∈ B, then B′ = B \ {b} is also linearly independent. Therefore
spanB′ is a proper subspace of spanB, and by Corollary 2.16Corollary 2.16 the former
has dimension smaller than λ, and so spanB = spanB′ ⊕ span {b} has
dimension smaller than λ. By Proposition 2.15Proposition 2.15 we have that span(B) 6=
V .

We can finally prove that indeed DCλ fails in N.

Corollary 2.18. N |= ¬DCλ

Proof. Define R to be the following binary relation: 〈f, x〉 ∈ R if and only
if f : α → V for some α < λ and rng f is a linearly independent subset of
V , and x /∈ span(rng f). Namely, fRx if and only if rng f ∪ {x} is linearly
independent.

We have that every α-sequence in V can be extended, but no f : λ→ V
can have a linearly independent range, since there is no subspace of V
whose dimension is λ.

Theorem 2.19. Let S ∈ N be a linear operator from V to itself, then there
is a ∈ F such that Sx = ax for all x ∈ V .

Proof. Let Ṡ be a symmetric name for S and E a support for it, as before
denote by W the span of EV , and W = Ẇ G.

We will first prove several helpful claims.

Claim. If xv ∈ W then Sxv ∈ W .
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Proof of the Claim. Suppose p 
 ẋv ∈ Ẇ , and by contradiction for some
q ≤ p, q 
 Ṡẋv = ẋu /∈ Ẇ . Let Σ be a 2-permutation which fixes W ,
and therefore E, and Σẋu 6= ẋu. Since Σq is guaranteed to be compatible
with q we have that Σq 
 Ṡẋv 6= ẋu, which is a contradiction. Therefore
p 
 Ṡẋv ∈ Ẇ .

Claim. If xv /∈ W and Sxv ∈ W then Sxv = x0.

Proof of the Claim. Let p be a condition such that p 
 Ṡẋv = ẋw ∈ Ẇ . If
there exists u 6= v, u /∈ W such that p 
 Ṡẋu = ẋw, let Σ be a 2-permutation
fixing E such that Σẋv = ẋv+u. We have that Σp 
 Ṡẋv+u = ẋw as well, and
Σp and p are compatible. Taking q stronger than both these conditions,
we have that q 
 Ṡẋv = Ṡẋv+u. Recall that by the definition of ˙add we
have that 1 
 ẋv+u = ẋv + ẋu, so we actually have q 
 Ṡẋv = Ṡẋv + Ṡẋu,
and therefore q 
 Ṡẋv = Ṡẋu = ẋ0.

If no such u exists, then either for some q ≤ p there exists u 6= v and
u /∈ W such that q 
 Ṡẋu = ẋv, and we are back to the previous case. Else
there is q ≤ p and u /∈ W such that q 
 Ṡẋu 6= Ṡẋv. By Corollary 2.13Corollary 2.13 we
have Σ fixing E which switches between ẋu and ẋv, and Σq is compatible
with q. This is a contradiction, since Σq 
 Ṡẋu = ṠΣẋv = ẋw. We therefore
have that the set

{
q ≤ p

∣∣∣ q 
 Ṡẋv = ẋ0

}
is dense below p, as wanted.

Suppose now that p is a condition forcing that Ṡ is not the zero map.
We will show that there is q ≤ p and a ∈ F such that q 
 Ṡ = a, namely
that the set of conditions which force that Ṡ is a scalar multiplication is
dense, by genericity this would mean that S = a as wanted.

If p already forces Ṡ = ȧ we are done. Otherwise there are u, v ∈ V
and q ≤ p such that q 
 ∀a ∈ F : Ṡ(ẋu − ẋv) 6= ȧ(ẋu − ẋv). Since q forces
Ṡ is not zero, it forces that ker(S) is a proper subspace. Without loss of
generality, E is a support for ker(S) as well. By the two claims above, if
v /∈ W and q 
 Ṡẋv ∈ Ẇ then q 
 ẋv ∈ ˙kerṠ, in which case v ∈ W .
Therefore for v /∈ W we have q 
 Ṡẋv /∈ Ẇ .

For every v ∈ V \W let E(v) = E ∪ ({v} ? ∅) and Wv = W ⊕ 〈v〉 =
span(E(v))V , then by the claims q 
 Ṡ ′′Ẇ ⊆ Ẇ , in particular we have that
q 
 Ṡẋv ∈ Ẇv, so we must have that q 
 Ṡẋv = ȧvẋv for some non-zero
scalar av ∈ F.

Claim. Suppose that v, u /∈ W and u /∈ Wv (so v /∈ Wu as well), then
av = au.

Proof of the Claim. Let u, v linearly independent overW , namely cu+dv ∈
W if and only if c = d = 0. We have that v+ u /∈ W , therefore av, au, av+u

are all non-zero.

q 
 ẋ0 = Ṡẋ0 = Ṡ(ẋv + ẋu − ẋv+u) = ȧvẋv + ȧuẋu − ȧv+u(ẋv + ẋu)

= (ȧv − ȧv+u)ẋv + (ȧu − ȧv+u)ẋu

By linear independence au = av = av+u as wanted.
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Fix now some v /∈ W and we have that for all u /∈ Wv we have to have
au = av. Therefore

q 
 ∀x(x /∈ Ẇv → Ṡx = ȧvx)

Because q also forces that Ṡ is a linear operator and that the span of V \Wv

is the entire space, we have to have that for all v ∈ V q 
 Ṡẋv = ȧẋv, as
wanted.

We have proved that if S ∈ End(V )∩N then Sx = ax. This means that
End(V ) is a field, but dim V 6= 1. That is V is a non-trivial Läuchli space,
and by Theorem 2.1Theorem 2.1 it is also indecomposable, and by Theorem 2.2Theorem 2.2 it has
no non-zero linear functionals.

The reader could see that the fact V is totally indecomposable over
F could have been proved just as easily as an immediate consequence of
Corollary 2.16Corollary 2.16 and Proposition 2.15Proposition 2.15, and Corollary 2.17Corollary 2.17 could have been
easily deduced now from the above conclusions of the theorem.

2.3 Consequences and Questions
Proof of Theorem 2.5Theorem 2.5. In M let µ be an ℵ cardinal, and fix F to be any
field in M, and take λ > µ. The above construction guarantees that the
symmetric model satisfies DCµ, but a Läuchli space exists.

We conclude with several questions we find interesting and have no
answer to:

Question. Does ZF + ¬AC prove the existence of a non-trivial Läuchli
space?

Question. Is it consistent with ZF that there is a totally indecomposable
vector space that is not a Läuchli space?

Theorem 2.2Theorem 2.2 shows that totally indecomposable spaces (and in partic-
ular non-trivial Läuchli spaces) have trivial duals. We ask the following
questions about the choice strength of the existence of functionals and
non-scalar automorphisms.

Question. Does the assertion “If V is a non-zero vector space, then V has
a non-zero linear functional” imply AC in ZF?

Question. Is it consistent with ZF and ¬AC and that for every non-zero
vector space there is a non-scalar endomorphism?

Question. Is it consistent with ZF that every non-zero vector space has a
non-scalar endomorphism, but there is a non-zero vector space that has a
trivial dual?
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On Antichains of Cardinals

In this chapter we present and extend the work of Feldman, Orhon, and
Blass in [FOB08FOB08]. All proofs in this chapter are in ZF. The theorem
was independently proved by Tarski in 1964 the proof was announced
in [Tar64Tar64], and appears in [RR85RR85, pp.22-23]11.

Recall that if A is a set then the Hartogs number of A, denoted by ℵ(A),
is the least infinite ordinal α such that α � |A|. If A is well-ordered then
|A| < ℵ(A), otherwise we simply have ℵ(A) � |A|.

We will slightly abuse the notation and if a = |A| we will write ℵ(a)
instead of ℵ(A). If a, b are cardinals of A and B respectively we will
denote a + b = |A ∪ B|, assuming we take disjoint copies of these sets;
a ·b = |A×B|; ab =

∣∣AB∣∣. We will also use 2a = |P(A)|. We will make free
use of the basic properties of cardinal arithmetic which hold in ZF.

We say that a set is Dedekind-finite if it has no countably infinite
subset, equivalently this is to state that its Hartogs number is ℵ0, or that
every proper subset has a strictly smaller cardinality. The assertion that
there exists an infinite Dedekind-finite set is equivalent to ¬Wℵ0. If a set is
not Dedekind-finite we say that it is Dedekind-infinite. A Dedekind-finite
(Dedekind-infinite) cardinal is the cardinal number of a Dedekind-finite
(Dedekind-infinite) set.

Truss published an extensive paper [Tru74Tru74] reviewing various forms
of Dedekind-finite sets. In the construction of a symmetric extension in
section 1.2section 1.2 assuming λ = ω (as Monro originally did) results in an infinite
Dedekind-finite set.

Lemma 3.1. Suppose that A is an infinite Dedekind-finite set, then P(P(A))
is Dedekind-infinite.

Proof. The following map is an injection from ω into P(P(A)):

n 7→ {B ⊆ A | |B| = n}

This is a well-defined function, and moreover it is injective by the follow-
ing argument. Since A is infinite it has subsets of every finite size, so no
n is mapped to the empty set and clearly every m 6= n are mapped to
different sets.

1Form T3(n)

26
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Proposition 3.2. If a is a Dedekind-infinite cardinal and ℵ(a) > λ then
a + λ = a.

Proof. We may assume that λ is infinite. Let A be a set such that |A| = a.
Since λ < ℵ(a), there is B ⊆ A such that |B| = λ. Since λ + λ = λ, given
an arbitrary set C such that |C| = λ and C ∩ A = ∅ we have a bijection
f : B ∪ C → B. The function F = f ∪ idA\B is a bijection from A ∪ C to A
and therefore a + λ = a as wanted.

Proposition 3.3. If a an is infinite cardinal, then for all 0 < n < ω, ℵ(a) =
ℵ(na).

Proof. Let A be a set such that a = |A|. Assume towards a contradiction
that ℵ(a) < ℵ(na). Then there is an injection f : ℵ(a)→ A× n.

For i < n let Xi = {α < ℵ(a) | f(α) ∈ A× {i}}. By the pigeonhole
principle there is at least one i such that |Xi| = ℵ(a), and therefore an
injective function from ℵ(a) into A which is a contradiction.

Theorem 3.4 (Hartogs). If for every A and B, |A| ≤ |B| or |B| ≤ |A|, then
every set can be well-ordered, i.e. the axiom of choice holds.

Proof. Let A be an arbitrary set. Since ℵ(A) � |A| we have that |A| <
ℵ(A). In particular we have an injection from A into an ordinal, therefore
A can be well-ordered.

3.1 Generalizing Hartogs Theorem
Hartogs theorem shows that if the cardinals are linearly ordered then the
axiom of choice holds. We know that a partial order is linear if and only
if every antichain is a singleton. The following is a natural generalization
of Hartogs theorem, given in [FOB08FOB08].

Definition 3.1. The k-Trichotomy Principle, Tri(k):

If a1, . . . , ak are distinct cardinals, then there are i 6= j such that ai ≤ aj.

Namely every antichain of cardinals has less then k elements.

We observe that for k = 1 this is vacuously true, and from here on end
we will always assume that k > 1 when asserting Tri(k). We can restate
Hartogs theorem as “Tri(2) implies the axiom of choice”, so the natural
generalization of Hartogs theorem would be:

Theorem 3.5 (Tarski; Feldman-Orhon). For every k < ω, Tri(k) implies
the axiom of choice.

For the proof of this theorem we need two preliminary claims. Feldman
and Orhon approach these claims somewhat differently. In their paper
they first prove that under the assumption of Tri(k) there are no infinite
Dedekind-finite sets, and that every cardinal a has some finite n such that
na+na = na. We replace these two proofs with the following lemma, and
give a slightly more general argument to Specker’s theorem.
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Lemma 3.6. For every cardinal a there exists a′ such that a ≤ a′ = a′ + a′.

Proof. Let A be a set such that |A| = a. Denote A′ = A×ω and let a′ = |A′|.
Clearly a ≤ a′ = a · ℵ0. Using distributivity of multiplication over addition
we have

a′ + a′ = a · ℵ0 + a · ℵ0 = a(ℵ0 + ℵ0) = a · ℵ0 = a′.

Theorem 3.7 (Specker). Suppose that a is an infinite cardinal such that
a + a = a, and b is such that a + b = 2a, then b = 2a.

Proof. From the assumption a + a = a we have that 2a · 2a = 2a+a = 2a =
a+b. Let A,B be disjoint sets of cardinality a, b respectively. We therefore
have a bijection f : P(A)× P(A)→ A ∪B.

There is some X ∈ P(A) such that f ′′({X}×P(A))∩A = ∅. Otherwise
composing f−1�A with the projection onto the left coordinate of P(A) ×
P(A) gives a surjection from A onto P(A) in contradiction to Cantor’s
theorem.

Fix X as above, and define g : P(A) → B defined by g(Y ) = f(X, Y ),
this is an injective function. Therefore b ≤ 2a ≤ b as wanted.

Finally we can prove Theorem 3.5Theorem 3.5.

Proof of Theorem 3.5Theorem 3.5. Suppose that Tri(k) holds for some k ∈ ω. Let A be
an infinite set, we will show that A can be well-ordered. We may assume
that A is Dedekind-infinite, if not we can take P(P(A)) instead and if it
can be well-ordered then A can be well-ordered as well. We shall denote
by a the cardinal of A.

We may assume that a + a = a, otherwise by Lemma 3.6Lemma 3.6 there is some
a′ = |A′| such that a′ + a′ = a′, and a ≤ a′. By showing that A′ can be
well-ordered we will show that A itself can be well-ordered as well. We
may also assume that Pn(A) does not contain ordinals for all n < k.

For i < k we define the following cardinals: let b0 = a, bi+1 = 2bi, and
let κi = ℵ(bk−i)

+k−i. We observe that if n < m then κm < κn. Finally, we
define

pi = bi + κi = |P i(A) ∪ κi|

From Tri(k) we know that there are two comparable cardinals in this
family, pm, pn where n < m. Similarly as in the proof of Lemma 3.6Lemma 3.6 we
can deduce that pm ≤ pn, for otherwise we can find an injective function
from κn > ℵ(bm) into bm.

We therefore have an injective f : Pm(A) ∪ κm → Pn(A) ∪ κn. Let
|(f ′′Pm(A)) ∩ Pn(A)| = m0 ≤ bn < bm and |(f ′′Pm(A)) ∩ κn| = m1, we
have that m0 + m1 = bm.

By the definition of bm, bm ≥ 2bn, and by Specker’s theorem we there-
fore have that m1 = bm and thus Pm(A) can be well-ordered and in par-
ticular A can be well-ordered, as wanted.

It follows that in ZF + ¬AC for every k there exists a set of k cardinals
mutually incomparable. The proof above gives us an antichain of cardinals
in the case where a we began with was not well-orderable.
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However the proof relies on the fact that a + a = a. In case this is
not true we can turn to the proof of Lemma 3.6Lemma 3.6 and see that it constructs
the wanted antichains, while the assumption in the lemma was that a is
Dedekind-infinite the construction yields an antichain if a is Dedekind-
finite.

Blass presents a direct construction in the paper. Given a set A which
cannot be well-ordered he constructs an antichain of any finite length. In-
stead of presenting the construction directly, we will give it a slight modi-
fication and prove something stronger.

3.2 Generalizing the Generalization
Instead of talking about injections in this section we will talk about sur-
jections. Recall that |A| ≤∗ |B| if A is empty or if B can be mapped onto
A. This relation is reflexive and transitive but it does not need to be anti-
symmetric. For example if there exists an infinite Dedekind-finite cardinal
b then there exists an infinite Dedekind-finite cardinal a such that

a < a + a ≤∗ a.

The above claim along with its proof are given in Proposition 3.13Proposition 3.13.

Definition 3.2. Tri∗(k):

If a1, . . . , ak are distinct cardinals, then there are i 6= j such that ai ≤∗ aj.

Of course for k = 1 this is vacuously true, and we will always assume
that k > 1. It is easy to see that Tri(k) implies Tri∗(k) because whenever
a ≤ b we have that a ≤∗ b. We would like to prove an analogue of
Theorem 3.5Theorem 3.5 for Tri∗(k). We begin with an analogue of Hartogs theorem,
namely a statement equivalent to Tri∗(2). Recall the ≤∗ analogue of ℵ(A)
is ℵ∗(A) which is the least ordinal that A cannot be mapped onto, and as
before we write ℵ∗(a) for ℵ∗(A) when a = |A|.

Theorem 3.8 (Lindenbaum22). If for every two sets A and B |A| ≤∗ |B| or
|B| ≤∗ |A|, then every set can be well-ordered.

Proof. Let A be an infinite set, take B = ℵ∗(A) then from the assumption
either |A| ≤∗ |B| or |B| ≤∗ |A|. However the definition of ℵ∗(A) was the
least ordinal β such that β �∗ |A|. Therefore |A| ≤∗ |B|.

Let f : ℵ∗(A) → A be a surjective function, then g : A → ℵ∗(A) de-
fined as g(a) = min {α < ℵ∗(A) | f(α) = a} is well-defined and injective,
therefore A can be well-ordered.

We shall now proceed to generalize Lindenbaum’s theorem in a similar
manner to the generalization of Hartogs’ theorem. The approach is based
on Blass’ proof, in contrast to the approach in the proof of Theorem 3.5Theorem 3.5
which was based on the original argument given by Feldman and Orhon.

2The result was announced by Lindenbaum in a joint paper with Tarski in 1924, but
Sierpiński was the first to publish a proof only in 1948 [Moo82Moo82, p. 216].
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Let us denote by Q(A) = A × P(A), and by induction let Qk+1(A) =
Q(Qk(A)). Again we abuse the notation and if a is the cardinal of A we
will interchange Q(a) and Q(A) freely.

Lemma 3.9. Let a be a cardinal such that for some ℵ cardinal κ we have

Q(a) ≤∗ a + κ

Then a is a well-orderable cardinal.

Proof. Let A be a set such that |A| = a. Without loss of generality A ∩
κ = ∅. From the assumption there exists a surjective f : A ∪ κ → Q(A).
Without loss of generality f �κ is injective and f ′′A ∩ f ′′κ = ∅, if this is
not the case we can remove ordinals from κ and rearrange it to a smaller
ordinal.

There is some B ∈ P(A) such that A×{B} ⊆ f ′′κ. Otherwise compos-
ing f with the projection from Q(A) to P(A) is a surjection from A onto
its power set, in contradiction to Cantor’s theorem.

We define g : A → κ by g(a) = f−1(a,B). This is an injective function
since f�κ is injective, and A×{B} ⊆ f ′′κ, therefore A can be well-ordered
and a ≤ κ is a well-orderable cardinal.

Blass original argument was assuming a + κ ≥ Q(a), but his argument
is a corollary of the above lemma. This is because a + κ ≥ Q(a) implies
a+κ ≥∗ Q(a). We can actually show now that 2a can be well-ordered: we
have that a < κ, therefore a + κ = κ and so Q(a) ≤∗ κ, and therefore can
be well-ordered. We point that out because it is a natural question with
an easy answer, but in fact this is merely a piece of trivia that has no use
in the rest of our proof.

Theorem 3.10. For every k < ω, Tri∗(k) implies the axiom of choice.

Proof. Suppose that the axiom of choice fails, and let A be an infinite set
that cannot be well-ordered whose cardinal is a. For k ∈ ω we define a
collection of cardinals. Let κ = ℵ∗(Qk(a)), we define the following:

pi = Qi(a) + κ+k−i

If {pi | i < k} was not an antichain then there were i, j < k such that
pi ≤∗ pj.

It would be impossible for i < j, because in such case we would have
a surjection f : Qj(A) ∪ κ+k−j → Qi(A) ∪ κ+k−i. Since κ+k−j < κ+k−i we
have that f ′′κ+k−j ∩κ+k−i has cardinality strictly smaller than κk−i. There-
fore f ′′Qj(A)∩ κ+k−i is of cardinality κ+k−i which is impossible because it
means that

κ+k−i < ℵ∗(Qj(A)) ≤ ℵ∗(Qk(A)) = κ.

However we cannot have j < i either, as in this case we have that
Qi(a) ≤∗ Qj(a) + κ+k−j. Since Q(Qj(a)) ≤ Qi(a) by Lemma 3.9Lemma 3.9 Qi(a) is
well-orderable, and therefore a is well-orderable, but we assumed that A
cannot be well-ordered.

Therefore {pi | i < k} is a ≤∗ antichain of length k, and Tri∗(k).
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3.3 Discussion and Open Questions

We have seen that both in the case of ≤ and ≤∗ if there is a finite bound
on the size of antichains then the axiom of choice holds. Feldman, Orhon
and Blass ask in the paper the following questions:

Question. Does ZF + Tri(ω) prove AC? Where Tri(ω) states that every
antichain is finite.

Question. Does ZF + Tri(∞) prove AC? Where Tri(∞) states that every
antichain is Dedekind-finite.

The authors of [FOB08FOB08] believe that the answer to the first question is
negative. Note that all the antichains that we have created used decreas-
ing sequences of ordinals, to construct an infinite antichain would require
either a decreasing sequence of cardinals, or a whole new understanding
in what structure is provably true from ZF on the order of cardinals. In his
notice Tarski asks whether or not the theorem can be extended to infinite,
and in particular countable, sets of cardinals.

We will now prove the equivalence between Tri(∞) and Tri(ω). If every
antichain is finite, in particular it is Dedekind-finite, and so Tri(ω) implies
Tri(∞), so we need to show now that the reverse implication holds.

We shall see that if there exists an infinite Dedekind-finite set then
there is a countably infinite (and so Dedekind-infinite) antichain of car-
dinals. Therefore Tri(∞) implies that Dedekind-finite sets are finite, in
particular antichains of cardinals. So Tri(∞) implies that every antichain
of cardinals is finite, which is to say it implies Tri(ω).

Lemma 3.11. If there exists an infinite Dedekind-finite set, then there exists
a countably infinite antichain of cardinals.

To prove this lemma we will first prove the following lemma by Tarski:

Lemma 3.12 (Tarski). Assume that there exists an infinite Dedekind-finite
set A. Then there exists an order preserving embedding of R with its natural
order into the class of Dedekind-finite cardinals.

Proof. We observe that the set S = {f ∈ A<ω | f injective} is a Dedekind-
finite set as well, otherwise it has a countably infinite subset {fn | n ∈ ω}.
However

⋃
n<ω rng fn is an enumerated union of finite sets and it is infi-

nite, and therefore countably infinite. Since A itself is Dedekind-finite this
is a contradiction.

Let {Xr ⊆ ω | r ∈ R} be a chain of order type R (e.g. indices of a fixed
enumeration of the rational numbers under Dedekind cuts). For r ∈ R
define Ar = {f ∈ S | dom f ∈ Xr}. Since Ar is a subset of a Dedekind-
finite set, it is a Dedekind-finite set as well and if r < s then Ar ( As.

Letting A = {ar = |Ar| | r ∈ R} finishes the proof. Since by the fact
As ( Ar for s < r we have as < ar, and it is clear that every two cardinals
in this set are comparable.
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Proof of Lemma 3.11Lemma 3.11. We will now use A to define a countably infinite an-
tichain of cardinals. First we observe that if r, s ∈ R and b is any cardinal
such that ar + b = as then b is not well-ordered. To see this, note that
b cannot be an infinite ℵ number, otherwise as would not be Dedekind-
finite. On the other hand if b was a finite set, we could not have had
infinitely many cardinals ar < p < as.

Consider now the family of cardinals {pn = a−n + ℵn | n ∈ ω}. If there
were n,m ∈ ω such that pn ≤ pm then we would have f : A−n ∪ ωn →
A−m ∪ ωm injective. However the usual argument shows that if m < n
then ℵn ≤ a−m, and if n < m then we have that am = an + α for some
ordinal α. Both contradictory to our assumptions.

This brings us to a natural question. What does the assertion “there is
no decreasing sequence of cardinals” imply in terms of choice principles?
It turns out that the answer in unknown. It clearly implies there are no
infinite Dedekind-finite sets, but does it imply much more? There is very
little known about this principle, as checking in [HR98HR98]33 shows.

It should be pointed that merely a decreasing sequence would not
suffice, we would need that the difference between infinitely many of
its members is not well-ordered. It seems like a reasonable conjecture
that this property is true for decreasing sequences of cardinals by the fact
that an infinite family of those would have the same Hartogs number and
therefore the differences between them cannot be well-ordered.

We saw that Tri(ω) implies that there are no family of cardinals whose
order is linear and dense, and in particular that there are no infinite
Dedekind-finite sets.

Let us take a moment to prove an earlier remark, and to show that ≤∗
may behave very strangely in the absence of choice.

Proposition 3.13. If there exists an infinite Dedekind-finite cardinal, then
there exists a Dedekind-finite cardinal a such that a < a + a ≤∗ a.

Proof. Let X be an infinite Dedekind-finite set. We have that X × {0, 1} is
also Dedekind-finite by Proposition 3.3Proposition 3.3: ℵ(X) = ℵ(X × 2) = ω.
Let A = {f ∈ (X × 2)<ω | f is injective}, as in the proof of Lemma 3.12Lemma 3.12 A
is Dedekind-finite. We will show that A can be mapped onto A × 2. And
so |A| = a proves the proposition.

We will now define a surjective function g : A→ A× {0, 1}. For f ∈ A
denote by kf = max dom f , we define g as follows:

g(f) =

{〈
f�kf , 0

〉
f(kf ) ∈ X × {0}〈

f�kf , 1
〉

otherwise.

To see that g is surjective, if 〈f, 0〉 ∈ A×2 then there is some y ∈ X×{0}
such that y /∈ rng f , and g(f ∪ {〈kf + 1, y〉}) = 〈f, 0〉. Similarly for pairs of
the form 〈f, 1〉. Since A and A × 2 are both Dedekind-finite we also have
that |A| < |A× 2| as wanted.

3This statement is Form 7 in the book.
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This motivates the following questions. Note that each question im-
plies the subsequent questions.

Question. Does Tri∗(ω) imply the axiom of choice?

Question. Does Tri∗(ω) imply Tri(ω)?

As with the finite case, we see quite easily that Tri(ω) implies Tri∗(ω).
The converse is true for finite k because both Tri(k) and Tri∗(k) imply the
axiom of choice, however is it still true in the case of k = ω?

Question. Does Tri∗(ω) imply Wℵ0, i.e. that there are no infinite Dedekind-
finite sets?

The Dedekind-finite sets constructed in Proposition 3.13Proposition 3.13 and in Tarski’s
lemma might have peculiar properties in terms of≤∗. For example it might
be possible that even when r < s we have as ≤∗ ar. This would necessitate
a different technique than the one employed in the proof of Lemma 3.11Lemma 3.11.
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