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Prikry-type forcings have been uniquely effective tools for proving
consistency results about cardinal arithmetic and combinatorics at
singular cardinals and their successors.

In the last 30 years, some results have given some indication
about why this might be the case.

These results all have the following flavor:
If V' is an inner model of W and there is a regular cardinal
in V' that is singular in W (and certain other cardinals are
preserved from V' to W), then there is an object in W
that resembles a generic object over \/ for some Prikry-
type forcing.

We call such objects pseudo-Prikry sequences.
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Diagonalization

A key property of generic objects for Prikry-type objects is that
they diagonalize some ground model ultrafilter (or sequence of
ultrafilters). For example, if U is a normal ultrafilter over k and
Py is the usual Prikry forcing defined by using U, then a sequence
of ordinals (o, | N < w) generates a Py-generic object if and only
if, for all X € U, we have a, € X for all sufficiently large n < w.

In an abstract setting in which we just have models V C W and a
regular cardinal Kk in V has been singularized in W, we may not
have a normal ultrafilter over kK in V to be diagonalized in W.
There is a natural normal filter over Kk to take its place, though:
the club filter on k.

So our pseudo-Prikry sequences will be sequences in W which
appropriately diagonalize certain club filters as defined in V.
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The earliest results

Theorem (DZamonja-Shelah, ‘95, [2])
Suppose that:
1 V is an inner model of W/;

2 K Is an inaccessible cardinal in V' and a singular cardinal of
cofinality 6 in W;

3 (K+)W — (Kl+)V'.
4 (Cq|a< k™) €V isasequence of clubs in k.

Then, in W, there is a sequence (y; | i < 0) of ordinals such that,
for all a < kT and all sufficiently large | < 8, 7; € Cy.

A similar theorem is proven by Gitik [3].
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Inevitable square sequences

Cummings and Schimmerling [1] proved that, if G is a generic
filter over V for Prikry forcing at a cardinal k, then O ,, holds in
V[G]. It turns out that a pseudo-Prikry sequence as in the Gitik
or DZamonja-Shelah theorems is enough to reach the same
conclusion.

Theorem (Gitik, DZzamonja-Shelah, Cummings-Schimmerling)

Suppose that:
1 V is an inner model of W,
2 K Is an inaccessible cardinal in V' and a singular cardinal of
cofinality Rg in W ;
3 (K+)W — (K;+)V.

Then U ., holds in W.
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A two-cardinal generalization

Magidor and Sinapova generalize the DZamonja-Shelah result in
two ways, including the following extension to clubs in Py (k™).

Theorem (Magidor-Sinapova, '17, [6])
Suppose that n < w and:
1 V is an inner model of W ;
2 K is a regular cardinal in \V/ and, for all m < n, (k*™)V has
countable cofinality in W

3 (K—&-)W — (,{—i-n—&—l)v and (wl)W < K;

4 (Dy | a < kt1) € V s a sequence of clubs in Py(k™").
Then, in W, there is an increasing sequence (x; | i < w) of
elements of (Px(k*"))Y such that, for all o < k™" and all
sufficiently large | < w, x; € Dy .

This can be seen as a "pseudo-" version of a generic sequence for
supercompact Prikry forcing using a normal measure on Py (k™).
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A further extension

Gitik extends this result to the general setting of P (), under
some additional cardinal arithmetic assumptions.

Theorem (Gitik, '18, [4])
Suppose that

1 V is an inner model of W,

2 in V, k < u are regular cardinals and u~* = u;

3 in W, there is a sequence (Qn | n < w) of elements of

(Pu(w))V such that U, Qn =

4 inW, u> (2 and (ut)Y is a cardinal;

5 (Do | o < ut) €V is a sequence of clubs in Py ().
Then, in W, there is an increasing sequence (X; | i < w) of
elements of (Px(w))Y such that, for all a < u* and all
sufficiently large | < w, X; € Dy .
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Definition
Suppose that 6 is a regular cardinal and £, g € °On. Then f <* g

if {i <6|g(i) <f(i)}is bounded in 8. Expressions such as
f <* g and f =* g are defined in the obvious way.

Definition (Exact upper bound)

Suppose that 6 is a regular cardinal and f = (fy | & < A) is a
<*-increasing sequence of elements of ®On. A function g € ?On
is an exact upper bound (e.u.b.) for f if

1 fo <*gforalla<

2 for every function h € 9On, if h <* g, then there is a < X
such that h <¥fa.


Christopher


Scales

Definition
Suppose that u is a singular cardinal and (u; | i < cf(w)) is an
increasing sequence of regular cardinals, cofinal in L.



Scales

Definition

Suppose that u is a singular cardinal and (u; | i < cf(w)) is an
increasing sequence of regular cardinals, cofinal in u. A sequence
f = (fa | @ <) of functions in []; () wi is called a scale (of
length A) in [T ccpqu) i i



Scales

Definition
Suppose that u is a singular cardinal and (u; | i < cf(w)) is an

increasing sequence of regular cardinals, cofinal in u. A sequence
f = (fa | @ < A) of functions in Hi<Cf(M) w; is called a scale (of

length A) in [T ccpqu) i i

1 f is <*-increasing;



Scales

Definition
Suppose that u is a singular cardinal and (u; | i < cf(w)) is an

increasing sequence of regular cardinals, cofinal in u. A sequence
f = (fa | @ < A) of functions in Hi<Cf(M) w; is called a scale (of

length A) in [T ccpqu) i i
1 f is <*-increasing;
2 for all h € J[;ccg(u) b, there is a < X such that h <* f,.



Scales

Definition
Suppose that u is a singular cardinal and (u; | i < cf(w)) is an
increasing sequence of regular cardinals, cofinal in u. A sequence
f = (fa | @ < A) of functions in Hi<cf(u) w; is called a scale (of
length A) in [T ccpqu) i i

1 f is <*-increasing;

2 for all h € J[;ccg(u) b, there is a < X such that h <* f,.

Theorem (Shelah)

Suppose that w is a singular cardinal. Then there is an increasing
sequence (u; | i < cf(w)) of regular cardinals, cofinal in , such
that there is a scale of length u™ in H,—<Cf(“) L.
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Club-increasing sequences

Definition
If 6 is a reqular cardinal and f = (f, | & < A) is a sequence of
elements of ?On, we say that f is club-increasing if
1 f is <*-increasing;
2 for every limit ordinal vy < A, there is a club D C «y and an
I < @ such that fo <; fy for all @ € D.

Theorem

Suppose that 6 < v < v+ < X are reqular cardinals and f is a
club-increasing sequence of length X\, consisting of elements of
90On. Then there is an e.u.b. g for f such that cf(g(i)) > v for all
1 <6.
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Avoiding squares

Suppose one wants to find a model with a singular cardinal K of
countable cofinality at which both SCH and [ ,, fail. The
simplest way to obtain a failure of SCH is to start with a
measurable cardinal kK at which GCH fails and do Prikry forcing.
But we've seen that this necessarily forces [k, to hold. By a
generalization of this result due to Magidor and Sinapova, U
will hold in any extension W in which

® (kT)"W is the successor of a regular cardinal in V;

® every V-regular cardinal in the interval [k, (k7)) has
countable cofinality in W.

This might lead us to look for Prikry-type extensions W in which
(k)W is the successor of a singular cardinal in V.
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Diagonal supercompact Prikry forcing

Solving this problem led Gitik and Sharon to introduce diagonal
supercompact Prikry forcing. Suppose that k is a supercompact
cardinal, U* is a supercompactness measure on Py (kt¥*1), and
U, is the projection of U* on PK(&JF”) for all n < w. The diagonal
supercompact Prikry forcing P associated to (U | n < w)
introduces an increasing sequence (x, | n < w) such that

® X, € Pe(k™") for all n < w;
e for every sequence (X, | n < w) € V such that X, € U, for
all n < w, we have x, € X, for all sufficiently large n < w.

As a result, in VP, cf((k*")Y) = w for all n < w. k remains a
cardinal, and (kT)Y" = (kT¥*1)V. Moreover, AP, (and hence
Ok.w) fails in VP If 28 = k+“+2 in V| then SCH fails at x in V¥
as well.
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Meeting diagonal clubs

Definition

Suppose that w is a singular cardinal and & = (u; | i < cf(w)) is
an increasing sequence of regular cardinals cofinal in . A
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Notice that the essential point in the previous proof was the fact
that the ground-model scale was bounded by a function in [[ & in
W. This leads to the following variant, which doesn’t require any
singularizing of cardinals.

Theorem (LH, '18, [5])

Suppose that V is an inner model of W and, in both V and W, u
Is a singular cardinal of cofinality 8. Suppose also that, in V,
&= {(u; | i <0) is an increasing sequence of regular cardinals
cofinal in w such that there is a scale of length u™ in ] &.
Suppose finally that (ut)Y = (W)W and (IT &)Y is bounded in
((dIm", <).

Then, in W, there is a function g € [| & such that, for every
diagonal club in i, (D; | i < 8) € V/, we have g(i) € D; for all
sufficiently large i < 6. Also, we can require that

sup{cf(g(1)) | I <6} = p.
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Generalized diagonal sequences

Theorem (LH, ‘18, [5])
Suppose that:
1 V is an inner model of W,
2 inV, cf(n) =0 < Kk =cf(K) < u are cardinals, with u strong
limit;
3 inV, k= {(ui|i<80)isan increasing sequence of regular
cardinals, cofinal in u, with k < lg;
4 in W, there is a C-increasing sequence (x; | i < 6) from
(Pe(p))V such that ;g i = p;
5 in W, (uT)Y remains a cardinal and u > 2°;
6 inV, (D(a) | a < ") is a sequence of diagonal clubs in
Then, in W, there is (y; | i < 6) such that, for all a < u* and all
sufficiently large i < 0, y; € D(a);.
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Fat trees

Definition
Suppose that K is a regular, uncountable cardinal, n < w, and, for all
m < n, Ay, > K is a regular cardinal. Then

T U I]»

k<n+1 m<k
is a fat tree of type (K, (Ao, ..., An)) if:
1 foralloe T and £ < 1h(c), we haveo [ £ € T;

2 for all o € T such that k :=1h(o) < n,
succr(0) :={a|o™(a) € T} is (< k)-club in Ag.

Lemma
IfC is a club in Pc(k™"), then there is a fat tree of type
(k, (T, kT0L k)) such that, for every maximal o € T, there is

x € C such that, for all m < n, sup(x N k*™™) = a(n—m).
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Theorem (LH, '18, [5])
Suppose that:
1 V is an inner model of W,
2 in V, k < X are cardinals, with kK regular;

3 in W, 8 <072 < |k|, 8 is a regular cardinal, and there is a
C-increasing sequence {x; | i < 8) from (Px(\))V such that
Uicoxi = A/

4 (A\T)Y remains a cardinal in W;

5 n<w and, inV, (\i|i<n)isa sequence of regular
cardinals from [k, \] and (T () | & < AT) is a sequence of
fat trees of type (k, (Mo, - - ., An))-

Then, in W, there is a sequence (o; | i < 8) such that, for all
a < X1 and all sufficiently large i < 0, o; is a maximal element of
T(a).
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Some remarks

The proof of the theorem on the previous slide is an elaboration
of the proof presented at the beginning of this section.

The theorem vyields as special cases all of the results mentioned in
the first section of this talk (though requiring very slightly
stronger hypotheses in some cases).

Questions remain about the extent to which the hypotheses of
these results necessarily hold in outer models in which cardinals
have been singularized.

Conjecture (Gitik)

Suppose that V is an inner model of W, K is regular in V/,
(cf(k)Y = w, (1)Y= (X1)W, and V and W agree about a final
segment of cardinals. Then there is an inner model /' C V such
that W contains a sequence that is generic over V' for Namba
forcing, stationary tower forcing, or a Prikry-type forcing.
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