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Chapter 1

Introduction

The technique of forcing was introduced by Paul J. Cohen in 1963 in order to show that ZFC
does not prove that V = L, the Continuum Hypothesis, and that ZF does not prove the Axiom
of Choice.

The idea behind forcing is fairly simple. Start with a reasonable model of ZFC, M , and
adjoin new sets to it in a manner that preserves ZFC and preferably preserves “niceness”. We
have some immediate restrictions here. For example, the new set must be a subset of some V M

α ,
in order to not add ordinals.

Cohen identified a condition, now called “genericity”, which we will study extensively over
the next few weeks. The idea is to identify a partial order inside of M which will “approximate”
larger and larger parts of the new set that we want to add. If we are lucky, then we can find a
set that is approximated by our partial order and satisfies this genericity condition over M .1

Example 1.1. Let M be a countable transitive model of ZFC. Since M is countable, it does not
contain all the real numbers in V . So we wish to adjoin a new real number to this model. One
simple way of doing that is by approximating its decimal expansion by finite means. In other
words, we want to approximate the real by the finite initial segments of its decimal expansion.

Now we run into an obvious problem: we don’t know the real, and we don’t even know a
priori which real we want to add. So instead of committing to a specific real, we will simply
consider all the possible finite initial segments of decimal expansion.

If r is the real number that we ended up adding, we want to avoid it having properties that
can be recognised by M in advance. Clearly, it will have some specified properties. Is the first
digit 0 or 5, or something else? When is the first 9 going to appear? All of these will have to
be specified a posteriori, but we want to avoid specifying them in advance if we can.

But what we can notice, for example, is that any finite approximation will have some
extension that contains the digit 6, or any finite sequence of digits for that matter, so in being a
very generic real number, we expect that the real we are approximating will eventually have 6,
and 0, and the sequence 14159, and really all of these sequences. On the other hand, we want
to limit the amount of information “coded” into this new real number. For example, since M
is countable, we can enumerate it (externally) and encode this enumeration somehow into this
real number while also having included, eventually, every finite sequence.

The way we control this “level of genericity” is by looking at properties of our partial order
and its subsets in M . Specifically, we are interested in dense sets. So our generic real will be one

1Assuming that M is countable will be enough to prove that we are always lucky. Because who needs luck
when you can use diagonalisation?
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that meets every dense set that M knows about. This will turn out to be the correct definition,
as we will see later.

Definition 1.2. We say that ⟨P,≤⟩ is a notion of forcing if it is a preordered set (reflexive
and transitive) with a maximum element denoted by 1P, or 1 when the context is clear. The
elements of P will be called conditions. If q ≤ p, we will say that q is a stronger condition
than, or that it is an extension of, p. Two conditions p, q are compatible if they have a common
extension (denoted by p || q), and they are incompatible otherwise (denoted by p ⊥ q).

Remark. We will see later on that we can make some assumptions on P without losing any generality.
The simplest one, which will be the common one, is that P is in fact a separative partial order, but
these assumptions may sometimes be strengthened to the statement that P is a complete Boolean
algebra.

Definition 1.3. We say that a preordered set is separative if whenever p, q are two distinct
conditions the exactly one of these two statements hold:

1. q < p and p ≰ q,

2. There is some r ≤ q such that r is incompatible with p.

Exercise 1.1. If P is a separative preorder, then P is a partial order. In other words, P is antisym-
metric.

Proposition 1.4. Let P be a preordered set. Define p ∼ q ⇐⇒ ∀r, r || p ⇐⇒ r || q. Then
P/∼ has a natural partial order defined on it which is separative, and [p] ⊥ [q] if and only if p
and q are incompatible in P. Moreover, if P has a maximum element, so will P/∼.

Proof. Let P∗ = P/∼ and define

[q] ≤∗ [p] ⇐⇒ {r ∈ P | r || q} ⊆ {r ∈ P | r || p}.

Easily, ≤∗ is a partial order and [1P], if it exists, is a maximum.
To see that ≤∗ is separative, suppose that [q] ≰∗ [p], then by definition there is some r ∈ P

such that r || q and r ⊥ p. But now, if s is stronger than both r and q, then [s] ≤∗ [r], [q],
witnessing their compatibility. And since r is incompatible with p, {s ∈ P | s || r} ⊈ {s ∈ P |
s || p}, as the former set contains r itself and the latter does not.

Finally, suppose that [p] || [q] and let [r] be a joint extension of them. Then, if s || r, then
s || p, q. Let s ≤ p, r be some extension, then s is certainly compatible with r and p, but it also
implies that s || q. So there is a joint extension of s and q, which is therefore a joint extension
of p, q, and so p || q. In the other direction, if p || q, and r is a joint extension of both, then
[r] ≤∗ [p], [q].

Exercise 1.2. Suppose that P is a preordered set and Q is a separative partial order such that
there is some s : P → Q which is a surjective homomorphism of preordered sets that preserves
incompatibility, then Q ∼= P∗. In other words, P∗ is the separative quotient of P.

Definition 1.5. Let P be a notion of forcing and let D ⊆ P be a set.

1. We say that D is predense if for every p ∈ P there is some q ∈ D such that p || q.

2. We say that D is dense if for every p ∈ P there is some q ∈ D such that q ≤ p.

3. We say that D is open if for every p ∈ D and q ≤ p, q ∈ D.
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4. We say that D is an antichain if for any two distinct p, q ∈ D, p ⊥ q.2

5. We say that D is a filter if for any p, q ∈ D there is some r ∈ D such that r ≤ p, q, and if
q ∈ D and q ≤ p, then p ∈ D.

The definitions of predense, dense, and open can also be relativised to be taken below a
fixed condition p.

Exercise 1.3. D is a maximal antichain if and only if D is a predense antichain.

Definition 1.6. Let M be a model of ZFC and let P ∈ M be a notion of forcing. We say that
a filter G ⊆ P is an M -generic filter if for any dense open D ⊆ P such that D ∈ M , G∩D ̸= ∅.

Exercise 1.4. We can replace “dense open” by “dense”, “predense”, or “maximal antichain” in the
definition of generic filter.

Exercise 1.5. If D is a dense set, then D contains a maximal antichain. Find a counterexample in
the case of a predense set.

Exercise 1.6. Suppose that P ∈ M is a notion of forcing, and let P∗ be its separative quotient. If
G ⊆ P is an M -generic filter, then G∗ = {[p] | p ∈ G} is an M -generic filter for P∗. Similarly, if G∗
is an M -generic filter for P∗, then G = {p | [p] ∈ G∗} is an M -generic filter.

Theorem 1.7. Suppose that P is a separative notion of forcing in M , and G is an M -generic
filter. Then either P has a minimal element, or G /∈ M .

Proof. Suppose that P does not have any minimal elements. If p ∈ P is any condition, then
there is some q < p, and by separativity, since p ≰ q, there is some r < p which is incompatible
with q. In other words, any condition in P has two incompatible extensions.

If F ∈ M is any filter, let DF = P\F . We claim that DF is dense. If it is, then G∩DF ̸= ∅,
so G ̸= F .

If p ∈ F , then it has two incompatible extension, q0, q1. Since any two conditions in F must
be compatible, at most one of q0, q1 can be in F , so the other must be in DF . If p /∈ F , then
p ∈ DF .

Theorem 1.8. Let M be a countable transitive model of ZFC and let P ∈ M be a forcing notion.
Then there is an M -generic filter G ⊆ P.

Proof. We enumerate the dense open subsets of P inside M as {Dn | n < ω}. Let G∗ be defined
recursively: First choose p0 ∈ D0. Suppose pn was chosen from Dn, then let pn+1 ∈ Dn+1 be
an extension of pn; this pn+1 can be found since Dn+1 is dense.

Let G = {p ∈ P | ∃n, pn ≤ p}. We claim that G is an M -generic filter. If p, q ∈ G, then
there is some n such that pn ≤ p, q, and if q ∈ G and q ≤ p, then there is some pn ≤ q ≤ p, so
p ∈ G. The genericity easily follows from the definition of G.

Corollary 1.9. If M is a countable transitive model, P is a notion of forcing, then any p ∈ P
is contained in some M -generic filter.

Proof. Consider P ↾ p = {q ∈ P | q ≤ p}, with the order it inherits from P.
2This is different from the order-theoretic definition of an antichain.
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If we go back to our example from earlier, approximating a new real number by its decimal
expansion, we see that if G is an M -generic filter, then it is a sequence of longer and longer finite
sequences of digits, and the limit of this sequence is some uniquely determined real number rG.
Moreover, given any real number, r, in M or otherwise, it defines a filter for our forcing, G, and
rG = r. So if r ∈ M , Gr is not M -generic. So the real we add using an M -generic filter is truly
a new real number, from the perspective of M .

Let us state some theorems which we will prove in the next section, but explain why we are
choosing countable transitive models, as well as the incredible strength of the method.

Theorem 1.10 (The Generic Model Theorem). Let M be a countable transitive model of
ZFC, and let G be an M -generic filter (for some P ∈ M). Then there is a countable transitive
model M [G] satisfying:

1. M [G] |= ZFC.

2. OrdM = OrdM [G].

3. M ⊆ M [G].

4. M [G] is the smallest countable transitive model extending M and containing G as a set.

The model M [G] is called a generic extension of M , indeed by the last property it is the
generic extension of M by G. Much like in the case of field extensions, where we can provide a
formal expression definable over our field that will be evaluated to a member of the extension
(a polynomial or a rational function, for example), we can also define names in M for the
members of M [G], and we have a relationship between the conditions of the forcing notions and
statements about these names. We will use the dot-notation to denote general names, so ẋ and
ẏ will be names. Given a generic filter G, we will write ẋG to mean the interpretation of this
name by this filter, which is an object in M [G].

We write p ⊩ φ(ẋ), where p is a condition in some forcing notion P and ẋ is some P-name,
to mean that p forces that the object evaluated from ẋ will have the property φ.

Theorem 1.11 (The Forcing Theorem). Suppose that ẋ ∈ M is a name, then

M [G] |= φ(ẋG) ⇐⇒ ∃p ∈ G, p ⊩ φ(ẋ).

Now is a good a time as any to discuss the philosophical foundations of forcing. Namely,
what gives with the countable models of ZFC, or even more, the countable transitive models?

The real answer is that these are not necessary. We can use the Reflection theorem to
extract some finite fragment of ZFC which is necessary for the machinery of forcing and use
countable and transitive models of that finite fragment; we can use the type omitting theorem
to show there are generic filters; we can use all manners of Boolean-valued models defined in
the meta-theory, which may very well be some weak theory of arithmetic, to argue the truth,
relative truth, and independence of statements from ZFC. In fact, for the most part, the Axiom
of Choice is not needed at all for the basic machinery of forcing to work.

However, forcing is meant to be a technique that is simple to apply, since it can be com-
plicated enough on its own. Since moving our proofs from one form of formalisation to the
other is going to be a tedious, but mechanical work, some of which we will see play out here,
we will stick with the countable transitive models of ZFC for our forcing concerns. At least
for the beginning of this course. We will later leave all the presumptions behind, and simply
force “over the universe”, that is, we will be working inside what may-very-well be a countable
transitive model of ZFC.

5



Chapter 2

The basic mechanics of forcing

Much like when describing a field extension we can describe the elements of the extension
“formally” as evaluations of rational functions or polynomials, one of the greatest strengths of
forcing is that we can describe the elements of the extension by the generic filter inside the
starting model, or ground model. For the rest of this chapter we fix a countable transitive
model M .

2.1 To force is to name names

Definition 2.1. Let P be a notion of forcing, we define the class of P-names, MP by recursion.

1. MP
0 = ∅,

2. MP
α+1 = PM (P ×MP

α),

3. MP
α =

⋃
β<αM

P
β for a limit ordinal α,

4. MP =
⋃

α∈OrdM
P
α .

An element of MP is called a P-name and will usually be denoted by ẋ.

The definition lends itself to a natural notion of P-name rank, or P-rank of a name, which
is the least α such that ẋ ⊆ P ×MP

α . This allows us to define all sort of things by recursion on
the rank of a name.

Definition 2.2. Suppose x ∈ M . The canonical name for x is denoted by x̌ and it is defined
recursively as x̌ = {⟨1, y̌⟩ | y ∈ x}.

Definition 2.3. Suppose that {ẋi | i ∈ I} is a family of P-names. We want to turn them into
a name for the set in the most obvious way.

{ẋi | i ∈ I}• = {⟨1, ẋi⟩ | i ∈ I}.

This extends to ordered pairs, sequences, functions, etc. We can now recast x̌ as {y̌ | y ∈ x}•.

Definition 2.4. The canonical name for the generic filter is Ġ = {⟨p, p̌⟩ | p ∈ P}.

Definition 2.5. Let ẋ be a P-name and let G be an M -generic filter. The interpretation of ẋ,
denoted by ẋG, is defined recursively, {ẏG | ∃p ∈ G, ⟨p, ẏ⟩ ∈ ẋ}.
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Exercise 2.1. For all x ∈ M and for any M -generic G, x̌G = x.

Exercise 2.2. If H is an M -generic filter, then ĠH = H.

Definition 2.6. M [G] = {ẋG | ẋ ∈ MP}.

Proposition 2.7. M ⊆ M [G], G ∈ M [G], and M [G] is a transitive set.

Proof. For any x ∈ M , x̌ is a P-name, so x̌G ∈ M [G], and therefore M ⊆ M [G], similarly
ĠG = G ∈ M [G]. Suppose that x ∈ y ∈ M [G], then y = ẏG for some ẏ, and by definition the
elements of y are of the form żG. In particular, x = ẋG for some ẋ ∈ MP, so x ∈ M [G] as
well.

We want to define a relation between the conditions and the names, which will help us
analyse the truth of M [G]. What properties are we looking for in our forcing relation, if it is
to predict correctly the properties of M [G]?

1. Certainly, if ⟨p, ẋ⟩ ∈ ẏ and p ∈ G, then by definition we want to have that p ⊩ ẋ ∈ ẏ.

2. If q ∈ G and q ≤ p, then p ∈ G. So that means that if p ⊩ φ, then q must also force it.

3. If p ⊩ φ, then p cannot force ¬φ as well.

4. If p forces something, then it should be true in any generic extension, so long p is in the
generic filter.

5. And ideally, if M [G] |= φ(x), we want to know there is some q ∈ G and ẋ such that
ẋG = x and q ⊩ φ(ẋ).

Naively, we can define that p ⊩ ẋ ∈ ẏ if and only if ⟨p, ẋ⟩ ∈ ẏ, we can then continue from
this definition to = and other formulas, requiring that p ⊩ ∃xφ(x) if and only there is some ẋ
such that p ⊩ φ(ẋ). But this is too simplistic.

Consider the name ẋ = {⟨p, ∅̌⟩}, where p is some condition different than 1. Then clearly,
the only way we can preserve the coherence of p ⊩ ∅̌ ∈ ẋ, that is extending p will not change
this fact, is by insisting that the names are defined differently, i.e. if ⟨p, u̇⟩ ∈ v̇ and q ≤ p, then
we want to require that ⟨q, u̇⟩ ∈ v̇ as well. This is not necessarily a bad idea, and we can modify
the definition of names so that it is “almost true”. But this still does not solve the problem that
if q ⊥ p, then q ⊩ ẋ = ∅̌, or at least this should be the case, and so now q ⊩ ẋ ∈ 1̌, despite the
fact that ⟨q, ẋ⟩ is not in 1̌.

We know that being generic means meeting every predense set, so being a generic filter that
contains a particular condition p we simply require that we meet any predense set below p. But
we can say a bit more, since the forcing relation should be coherent with the order of the forcing
notion (this is property (2) in the above list), we can define our forcing relation using dense,
and indeed dense open, sets.

We define the forcing relation by induction on the complexity of φ (in the syntax with ¬,∧, ∃
and = as logical symbols). For atomic formulas we will do this simultaneously. And to do this,
we use recursion on the P-rank of the names involved.

Remark. This allows us to define the forcing relation, uniformly, for any finite number of formulas
without contradiction Tarski’s theorem about the undefinability of the truth. The reason, of course,
is that if we can define this for all formulas, then simply consider the forcing {1}, and we can ask
which statements are forced to be true, but that must be the truth in the model. This is a fine and
very subtle point which is worth taking the time to fully internalise.
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Definition 2.8 (The Forcing Relation). Let p be a condition and ẋ, ẏ be two names.

1. p ⊩ ẋ = ẏ if and only if the two conditions below hold:

(a) For any ⟨p′, ż⟩ ∈ ẋ, {q ≤ p | q ≤ p′ → ∃⟨q′, ẇ⟩ ∈ ẏ, q ≤ q′ ∧ q ⊩ ż = ẇ} is dense below
p.

(b) For any ⟨q′, ẇ⟩ ∈ ẏ, {q ≤ p | q ≤ q′ → ∃⟨p′, ż⟩ ∈ ẋ, q ≤ p′ ∧ q ⊩ ż = ẇ} is dense below
p.

2. p ⊩ ẋ ∈ ẏ if and only if the set {q ≤ p | ∃⟨p′, ż⟩ ∈ ẏ, q ≤ p′ ∧ q ⊩ ż = ẋ} is dense below p.

3. p ⊩ φ ∧ ψ if and only if p ⊩ φ and p ⊩ ψ.

4. p ⊩ ¬φ if and only if there is no q ≤ p such that q ⊩ φ.

5. p ⊩ ∃xφ(x) if and only if the set {q ≤ p | ∃ẋ : q ⊩ φ(ẋ)} is dense below p.

Remark. Cohen’s original forcing relation was different. Instead of ∧, Cohen used ∨, but with the
same template for his definition, and he defined p ⊩ ∃xφ if and only if there is some name ẋ such
that p ⊩ φ(ẋ). These conditions are far more in line with computational and intuitionistic approach,
but turned out to be slightly harder to work with (along with other limitations of Cohen’s original
definition). Luckily, Cohen’s forcing relation turned out to be equivalent, in a sense, to the modern
one we just defined. That is, both relations have ultimately the same “relationship” with the generic
extension.

Proposition 2.9. 1. If p ⊩ φ and q ≤ p, then q ⊩ φ.

2. p ⊩ φ if and only if {q ≤ p | q ⊩ φ} is dense below p.

Proof. We prove these by induction on φ and the rank of the names. Let us deal with (1) first,
noting that it also implies the =⇒ direction of (2).

If φ is atomic, say ẋ ∈ ẏ, the set {q ≤ p | ∃⟨p′, ż⟩ ∈ ẏ, q ≤ p′ ∧ q ⊩ ż = ẋ} is dense below
p, in particular if q ≤ p, then the set is also dense below q. The case for ẋ = ẏ is similar. The
case for connectives and quantifiers is similar. So indeed, if q ≤ p, then q ⊩ φ as well.

In the case of (2) it remains to show that if {q ≤ p | q ⊩ φ} is dense below p, then p ⊩ φ
as well. The proof is similar. Since for each q ≤ p the set of conditions in the definition of
q ⊩ ẋ = ẏ is dense below q, the union of these dense sets is dense below p.

Exercise 2.3. Show that p ⊩ φ∨ψ if and only if the set {q ≤ p | q ⊩ φ∨ q ⊩ ψ} is dense below p.

Exercise 2.4. Show that p ⊩ φ → ψ and p ⊩ φ imply p ⊩ ψ.

Exercise 2.5. Show that p ⊩ ∀xφ(x) if and only if for all ẋ, p ⊩ φ(ẋ).

Exercise 2.6. Show that if φ is a formula, then {p ∈ P | p ⊩ φ ∨ p ⊩ ¬φ} is a dense open set.

Exercise 2.7. There is no p and φ such that p ⊩ φ ∧ ¬φ.

Exercise 2.8. Suppose that p ⊩ φ(ẋ) ∧ ẋ = ẏ, then p ⊩ φ(ẏ).

Theorem 2.10 (The Mixing Lemma). Suppose that p ⊩ ∃xφ(x), then there is some ẋ such
that p ⊩ φ(ẋ).

Proof. The set {q ≤ p | ∃ẋq, q ⊩ φ(ẋq)} is dense below p. So it contains a maximal antichain D,
for each q ∈ D let ẋq be a name such that q ⊩ φ(ẋq), we may assume without loss of generality
that if ⟨q′, ẏ⟩ ∈ ẋq, then q′ ≤ q:
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1. If q′ ⊥ q, then we may omit the pair entirely.

2. If q′ is compatible with q, then we may replace q′ by all of their joint extensions.

In particular, if q, r ∈ D are distinct, then r ⊩ ẋq = ∅̌. Finally, let ẋ =
⋃

{ẋq | q ∈ D}.

Claim. If q ∈ D, then q ⊩ ẋ = ẋq.

Finally, p ⊩ φ(ẋ), otherwise there is some r ≤ p such that r ⊩ ¬φ(ẋ). Since D was a
maximal antichain, there is some q ∈ D such that q is compatible with r, but since q ⊩ φ(ẋ),
this is impossible.

Exercise 2.9. P is a separative notion of forcing if and only if q ≤ p ⇐⇒ q ⊩ p̌ ∈ Ġ.

2.2 The generic model

Theorem 2.11 (The Forcing Theorem).

1. If p ⊩ φ(ẋ), and G is M -generic such that p ∈ G, then M [G] |= φ(ẋG).

2. If M [G] |= φ(ẋG), then there is some p ∈ G such that p ⊩ φ(ẋ).

Proof. We begin by proving both of these for atomic formulas, by induction on P-ranks, for
both ẋ ∈ ẏ and ẋ = ẏ simultaneously. In the case of (1), suppose that p ⊩ ẋ ∈ ẏ, then there
is some q ∈ G such that q ≤ p and some ⟨p′, ż⟩ ∈ ẏ for which q ≤ p′ and q ⊩ ẋ = ż. By the
induction hypothesis, M [G] |= ẋG = żG, and since q ≤ p′, we have that p′ ∈ G so by the very
definition of ẏG we have that ẋG = żG ∈ ẏG. The proof for equality is similar.

In the case of (2), suppose that M [G] |= ẋG ∈ ẏG, then by definition there is some p ∈ G
and ż such that ⟨p, ż⟩ ∈ ẏ and ẋG = żG. By the induction hypothesis, there is some q ∈ G such
that q ⊩ ẋ = ż, and without loss of generality we can assume q ≤ p, so q ⊩ ẋ ∈ ẏ. And again
for equality the proof is similar.

We can now prove the theorem for more complicated formulas. M [G] |= φ ∧ ψ if and only
if M [G] |= φ and M [G] |= ψ if and only if there are p0, p1 ∈ G such that p0 ⊩ φ and p1 ⊩ ψ if
and only if there is q ∈ G such that q ⊩ φ ∧ ψ. Negation and ∃xφ are proved similarly.

We can characterise the forcing relation externally to our model as well. This will require
us to know all the generic filters, which we can do in V , since M is a countable model. This
semantic approach to the forcing relation is not very different from the syntactic definition
above, which also takes place in the meta-theory.

Corollary 2.12. p ⊩ φ ⇐⇒ for any M -generic G, such that p ∈ G, M [G] |= φ.

Proof. In the forward direction, this is clause (1) of The Forcing Theorem. In the other direction,
if p ̸ ⊩ φ, then there is some q ≤ p such that q ⊩ ¬φ. Let G be a generic filter such that q ∈ G,
then p ∈ G, but M [G] |= ¬φ.

Theorem 2.13. M [G] |= ZFC, or in other words 1 ⊩ ZFC.

Proof. Using Proposition 2.7, M [G] is transitive so Extensionality and Foundation hold imme-
diately, and since M ⊆ M [G] we also get ω ∈ M [G] so Infinity holds as well.
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Suppose that x ∈ M [G], let ẋ be a name such that ẋG = x. We define a name ẏ as follows:

ẏ = {⟨p, u̇⟩ | ∃⟨p′, ż⟩ ∈ ẋ, p ≤ p′ ∧ p′ ⊩ u̇ ∈ ż}.

The problem is that this may very well be a proper class, since we can find u̇ satisfying the
condition of arbitrarily high P-rank. The solution is to not that we can require the P-rank of u̇
to be smaller than the P-rank of ẋ, which will guarantee it is a set.

Claim. ẏG =
⋃
x.

Proof. Suppose that u ∈
⋃
x, then there is some z ∈ x such that u ∈ z. Therefore, there is

some ⟨p, ż⟩ ∈ ẋ such that p ∈ G and żG = z, moreover there is some q ∈ G and u̇ such that
⟨q, u̇⟩ ∈ ż. Since the P-rank of u̇ is below that of ẋ, and G is a filter, there is some r ≤ p, q such
that r ∈ G and r ⊩ u̇ ∈ ż, so ⟨q, u̇⟩ ∈ ẏ. Therefore,

⋃
x ⊆ ẏG.

The other direction is trivial: if u ∈ ẏG, then there is ⟨p, u̇⟩ ∈ ẏ with p ∈ G and so by
definition, p ⊩ ∃z(z ∈ ẋ, u̇ ∈ ż), M [G] |= ẏG ⊆

⋃
x.

Therefore, from the claim we have that M [G] satisfies Union.
For Power Set it is not hard to verify that if ẋ is any name, {⟨p, ẏ⟩ | p ⊩ ẏ ⊆ ẋ} is a name for

the power set of ẋG, and if we cut the P-ranks of these ẏs to that of ẋ itself, then the argument
will also be valid.

For Replacement, suppose that M [G] |= ∀u ∈ ẋG∃!vφ(u, v), then there is some p ∈ G which
forces that. Consider the name ẏ = {⟨q, v̇⟩ | ∃⟨p′, u̇⟩ ∈ ẋ, q ≤ p, p′ ∧ q ⊩ φ(u̇, v̇)}. If we can
show that ẏ is a set, subjected to restricting v̇ to those of minimal rank satisfying the property
for a fixed u̇, then this is certainly enough to prove Replacement in M [G]. But, of course, for
each ⟨p′, u̇⟩ and q ≤ p, p′ the minimal ranked v̇s form a set, so there is only a set of potential
candidates.

Finally, for the Axiom of Choice, note that ẋ is well-orderable and G is well-orderable, and
there is, in M [G], a definable function from ẋ × G → ẋG, with the trivial3 exception for when
ẋG = ∅ but ẋ is not the empty name. So ẋG is the image of a well-orderable set, and therefore
it is well-orderable as well.

Remark. Note that we only used the Axiom of Choice to prove that M [G] |= AC. And indeed, if
we only had assumed that M |= ZF, we can still prove M [G] |= ZF. On the other hand, it is quite
possible that M [G] |= AC while M |= ¬AC.

Theorem 2.14. M [G] and M have the same ordinals.

Proof. Since OrdM ⊆ OrdM [G] it is enough to show the other inclusion. Suppose that α was the
least ordinal in M [G] \ M , then α = OrdM , and let α̇ be a name for α. Then for each β < α,
there is some ⟨p, β̌⟩ ∈ α̇. However, α̇ ∈ M is a set in M , so this is impossible.

3But equally annoying.
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2.3 Morphisms of forcing notions

Definition 2.15. Let P and Q be two forcing notions. We say that π : Q → P is a projection
(of forcing notions) if:

1. π(1Q) = 1P.

2. If q1 ≤Q q0, then π(q1) ≤P π(q0).

3. For any p ∈ P and q ∈ Q, if p ≤P π(q), then there is some q′ ≤Q q such that π(q′) ≤P p.

Remark. We sometimes require that π is surjective, in which case we can require that π(q′) = p in
the third condition and omit the first one.

Proposition 2.16. Suppose that P and Q are two forcing notions and π : Q → P is a projection.
Then for any dense open subset D ⊆ P, π−1(D) is a dense subset of Q.

Proof. Suppose that q ∈ Q, we want to find some q′ ≤Q q such that π(q′) ∈ D. Since D is
a dense open subset of P, there is some p ∈ D such that p ≤P π(q). By condition (3) in the
definition of a projection, there is some q′ ≤Q q such that π(q′) ≤P p. Since D is a dense open
set, π(q′) ∈ D as wanted.

Corollary 2.17. Suppose that P and Q are two forcing notions and π : Q → P is a projection.
If G ⊆ Q is a generic filter, then H = {p ∈ P | ∃q ∈ Q, π(q) ≤P p} is a generic filter.

Proof. To see that H is a filter it is enough to show that if p0, p1 ∈ H, then there is some p ∈ H
such that p ≤P p0, p1. And we may assume that pi = π(qi) for qi ∈ G, since we can replace each
pi by a stronger condition which is in π“G. Since G is a filter, there is some q ∈ G such that
q ≤Q q0, q1. Therefore π(q) ∈ H and π(q) ≤P p0, p1 as wanted.

To see that H is generic, let D be a dense open subset of P, then π−1(D) is a dense subset
of Q, and therefore there is some q ∈ G such that π(q) ∈ D, so H ∩D ̸= ∅.

Example 2.18. Let P be 2<ω and let Q be the tree ω<ω, both ordered by reverse inclusion.
Consider the function π : Q → P defined by π(s) = ⟨s(i) (mod 2) | i < |s|⟩.

Much less trivially, we can find a projection in the other direction, at least if we are willing
to restrict to a dense subset of 2<ω. Let D be the set of all those sequences which has 1 as
their last coordinate (and the empty sequence). Then σ : D → ω<ω, which is defined as follows,
is a projection. Given s ∈ D, let 1s = {i < ω | s(i) = 1} and for i ∈ 1s \ {|s| − 1} let
i∗ = min{j ∈ 1s | i < i}. Then we simply define σ(s) = ⟨i∗ − i | i ∈ 1s⟩.

In simpler words, we consider the letter 1 as a separator, and count the sizes of blocks of
consecutive 0s in our sequence.

Definition 2.19. We say that π : P → Q is a complete embedding if:

1. For all p0, p1 ∈ P, p1 ≤P p0 ⇐⇒ π(p1) ≤Q π(p0).

2. For all p0, p1 ∈ P, p1 ⊥P p0 ⇐⇒ π(p1) ⊥Q π(p0).

3. For all q ∈ Q there is some p ∈ P such that whenever p′ ≤P p, then π(p′) ||Q q.

Exercise 2.10. Show that condition (3) can be replaced by “the image of a dense/predense/maximal
antichain in P is predense in Q”.
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Proposition 2.20. Suppose that π : P → Q is a complete embedding, if G ⊆ Q is a generic
filter, then H = π−1(G) ⊆ P is a generic filter as well.

Proof. We first verify that H is generic, but indeed if D ⊆ P is a dense set, by the exercise,
π“D is predense in Q, so there is some p ∈ D such that π(p) ∈ G, and therefore p ∈ H.

Let p ∈ H and let p′ ∈ P such that p ≤P p
′. Then by definition π(p) ≤Q π(p′) and π(p) ∈ G,

therefore π(p′) ∈ G and so p′ ∈ H. Suppose now that p, p′ ∈ H. Then π(p) and π(p′) are both
in G, these are compatible and therefore p and p′ are compatible in P, however we want to find
such a witness inside H.

Consider the set D = {r ∈ P | r ⊥P p ∨ r ⊥P p
′ ∨ r ≤P p, p

′}. It is not hard to verify that
this set is indeed dense, since p and p′ are compatible. Therefore G∩π“D ̸= ∅, so there is some
r ∈ P such that r ∈ D and π(r) ∈ G. However, since π(p) and π(p′) are both in G it has to be
the case that r ≤ p, p′, and so r ∈ H as well.

What we see is that if P embeds into Q or Q projects onto P, then any generic extension by
Q will contain a generic extension by P.

Definition 2.21. We say that π : P → Q is a dense embedding if:

1. For all p0, p1 ∈ P, p1 ≤P p0 ⇐⇒ π(p1) ≤Q π(p0).

2. For all q ∈ Q there is some p ∈ P such that π(p) ≤Q q.

Proposition 2.22. Suppose that π : P → Q is a dense embedding if and only if π is both a
projection and a complete embedding.

Proof. Assume that π is a dense embedding. The fact that π is a projection is trivial to verify.
To see that it is a complete embedding, p ⊥P p′ implies that there is no r ≤P p, p′, but if
there was q ≤Q π(p), π(p′), then by (2) we had some π(r) ≤Q q and by (1) we would have that
r ≤P p, p

′. The other direction is similar. Lastly, let q ∈ Q be a condition and let p ∈ P be
such that π(p) ≤Q q. Then if p′ ≤P p, then not only π(p′) is compatible with q, it is in fact an
extension of q.

In the other direction, if π is a projection and a complete embedding, (1) holds by virtue of π
being an embedding. Moreover, since π“P is a predense subset of Q, given any q ∈ Q, q ||Q π(p′)
for some p′. Therefore, there is some q′ ≤Q q, π(p′) and by the definition of a projection we have
that there is some p ∈ P such that π(p) ≤Q q

′, and so we have density as well.

Definition 2.23. We say that ⟨B,≤⟩ is a Boolean algebra if it is a partially ordered set with
a minimum (denoted by 0B), maximum (denoted by 1B), every two elements p, q have a least
upper bound (p + q or p ∨ q) and a greatest lower bound (p · q or p ∧ q), and for each p ∈ B
there is a unique q such that p+ q = 1B and p · q = 0B.

We say that B is complete if every subset of B has a least upper bound (
∑

or sup) and a
greatest lower bound (

∏
or inf).

When we consider a Boolean algebra as a forcing notion we will implicitly omit 0B from
consideration. In particular, when referring to dense embeddings, the meaning will always be
to the partial order that is B without 0B.

Theorem 2.24. If P is a separative partial order, then there is a unique (up to isomorphism)
complete Boolean algebra B(P) such that P admits a dense embedding into B(P).
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Proof. Consider the function i(p) = {q ∈ P | q ≤ p}. We say that a subset U of P is regular
open if it satisfies that p ∈ U if and only if i(p) ∩ U is dense open below p. This is equivalent
to endowing P with the downwards-cone topology and requiring that U is equal to int(cl(U)).
We claim that B(P) = {U ⊆ P | U is regular open}, ordered by inclusion is a complete Boolean
algebra.4 Note that quite trivially, i(p) is always regular since P is separative.5

Suppose that A ⊆ B(P), then there is a smallest regular open set which contains
⋃

A,
namely the interior of the closure of the union. This is easily the sup of our Boolean algebra;
and it is enough to show the complement operation exists. And indeed, since U ∈ B(P) is open,
its complement is closed, so we can take its interior, which is a regular open set, which we can
check is the complement of U .

Finally, to see that the embedding is dense, simply note that if A ∈ B, then there is some
p ∈ P such that i(p) ⊆ A.

It remains to show that B is unique up to an isomorphism. However, note that for any
A ∈ B we have that A = sup{i(p) | p ∈ A}. So if j : P → B′ is a dense embedding to a
complete Boolean algebra, we can extend it to a unique isomorphism j+ : B → B′ by that very
definition.

Exercise 2.11. Show that U is a regular open subset of P if and only if there is some φU such that
p ∈ U if and only if p ⊩ φU .

We will tacitly assume that P ⊆ B(P) by identifying p and i(p), unless stated otherwise.

Theorem 2.25.

1. Suppose that there is a complete embedding P → Q, then there is a projection Q → B(P).

2. Suppose that there is a projection Q → P, then there is a complete embedding P → B(Q).

Proof. Suppose that π : P → Q is a complete embedding. Define τ(q) = sup{p ∈ P | π(p) ≤Q q},
and we want to show that this is a projection. Since π is a complete embedding, π“P is a
predense subset of Q, so supπ“P = 1Q, so indeed τ(1Q) = 1P. It is also not hard to see that
if q1 ≤Q q0, then τ(q1) ≤B(P) τ(q0). Suppose that p ≤B(P) τ(q), then there is some p′ ∈ P such
that p′ ≤B(P) p. Take q′ = π(p′), then by definition τ(q′) ≤B(P) τ(q).

Suppose that π : Q → P is a projection, and again assume that Q = B(Q), we will deal with
the general case at the end. We define τ(p) = sup{q | π(q) ≤P p}. We first need to check that τ
is an order embedding that preserves incompatibility. Quite immediately from the definition, if
p1 ≤P p0, we get that τ(p1) ≤Q τ(p0). Conversely, suppose that p1 ≰P p0, then by separativity
there is some r ≤ p1 which is incompatible with p0. Since π(1Q) = 1P, there is some q1 such
that π(q1) ≤P r. It is not hard to show that if q0 is such that π(q0) ≤P p0, then q1 ⊥Q q0. At
the same time, however, q1 ≤Q τ(p1), so it is impossible that τ(p1) ≤Q τ(p0), as in that case
q1 would have to be compatible with some q0 such that π(q0) ≤P p0. The same argument also
shows that incompability is preserved by τ .

Finally, we need to verify that if q ∈ Q, then there is some p such that for all p′ ≤P p, τ(p′)
is compatible with q. We set p = π(q), then if p′ ≤P π(q), by definition of projection there is
some q′ ≤Q q such that π(q′) ≤P p

′, which means that q′ ≤Q τ(p′) and so the two conditions are
compatible.

4Note that the Boolean complement is not the set theoretic complement, but rather the interior of the
complement!

5Indeed, P is separative if and only if i(p) is a regular open set.
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In the case that Q is not a complete Boolean algebra, it is still the case that Q is dense in
B(Q), so the checking that τ is an embedding is the same as before. The problem is in the
previous paragraph, since π(q) might not be well-defined if q ∈ B(Q) \ Q. However, by density
we can take any q′ ∈ Q which extends q and use π(q′) for that; or we can instead define the
embedding from B(P) instead.

Corollary 2.26. If P and Q are complete Boolean algebras, then the existence of a projection
is equivalence to the existence of an embedding in the other direction.

We will write P <◦ Q to mean that there is a complete embedding from P into B(Q) and
P ∼= Q to mean that B(P) and B(Q) are isomorphic.

Exercise 2.12. Show that P <◦ Q if and only if there is a projection from a dense subset of Q to P
if and only if there is a complete embedding P into Q.

Exercise 2.13. Show that P ∼= Q if and only if there is a dense embedding between them (in one
direction or the other).

Remark. Armed with our new understanding of how embeddings behave, we can go back to our
projection from 2<ω to ω<ω. Or at least the one we defined on the dense subset of sequences which
end with 1. We could try and extend this embedding to 2<ω by simply omitting the last block of 0s
assuming the sequence does not end with a 1; or by adding a “phantom 1” to the sequence.

Neither option works. In the first case, where we trim our sequence, consider ⟨0, 0, 0⟩, which is
mapped to ⟨⟩ in ω<ω, then ⟨2⟩ ≤ω<ω ⟨⟩, but there is no extension of ⟨0, 0, 0⟩ in 2<ω which will be
mapped to ⟨2⟩ in ω<ω, since that would require the third element to be 1 (i.e., the first block of 0s
has to be have two elements).

In the other option of adding a “phantom 1” to the end of the sequence we get the dual problem.
⟨0⟩ is mapped to ⟨1⟩, but ⟨0, 0⟩ ≤2<ω ⟨0⟩ now has to be mapped to ⟨2⟩, so this is no longer (weakly)
order preserving.

Instead, if we understand the map into the Boolean completion, we can map ⟨0⟩ into the
condition which guarantees that the first coordinate of the generic sequence added by ω<ω is non-
zero. Similarly, ⟨0, 1, 0, 0, 0⟩ is mapped to the one forcing that the first coordinate is 1, while the
second is “at least 3”. This can be seen, just as well, as the completion from the dense subset to
the entire Boolean completion, and then restricted back to the original 2<ω.

Definition 2.27. We say that a condition p ∈ P is an atom if it does not have any two
incompatible extensions.

Exercise 2.14. Suppose that P is separative, then p is an atom if and only if p is a minimal element.

Theorem 2.28. Suppose that P and Q are separative countable notions of forcings, then P ∼= Q
if and only if |{p ∈ P | p is an atom}| = |{q ∈ Q | q is an atom}|.

Proof. Using a back-and-forth argument we can show that assuming that P and Q are countable
Boolean algebras, then they are isomorphic if and only if they have the same number of atoms..
If P is a countable separative forcing, look at the Boolean algebra it generates inside B(P), and
similarly for Q, and apply the back-and-forth argument as necessary.

Remark. We can provide a robust foundation for forcing, as being done internal to the universe,
by defining a “Boolean-valued model” which behaves, in a way, like the class of P-names where the
truth of statements is considered in the Boolean completion (rather than the usual {⊤,⊥}). This
is a story for a different day.
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Chapter 3

Examples: Adding real numbers

We are now ready to ignore the foundations of forcing, and simply, and always, work internal
to our universe. This means that we will now talk about V -generic filters, as though V was a
countable transitive model in a larger universe. We will also omit V when it will be clear from
context.

3.1 Cohen forcing

Definition 3.1. Cohen forcing is the unique atomless countable forcing. We will write Add(ω, 1)
to denote it, and we will usually consider it as the partial order that consists of p : ω → 2 with
dom p being finite, ordered by reverse inclusion.

As we saw we can represent this forcing as 2<ω or ω<ω or n<ω for any countable n > 1.
Indeed, any countable partial order will do. And we will see how this can be useful.

Theorem 3.2. Let G ⊆ Add(ω, 1) be a generic filter, and let c =
⋃
G, then c : ω → 2 is a new

real number. Moreover, G ∈ V [c], that is, we can reconstruct G from c.

Proof. It is clear that c ⊆ ω × 2. To see that dom c = ω, define for any fixed n < ω the
set Dn = {p ∈ Add(ω, 1) | n ∈ dom p}. This is a dense (and open) set, since given any
condition p, either n is in the domain of p and p ∈ Dn, or p ∪ {⟨n, 0⟩} ∈ Dn is an extension
of p. Therefore, by genericity dom c = ω. To see now that c is a function, if n < ω and
⟨n, i⟩, ⟨n, j⟩ ∈ c, then there are pi, pj ∈ G such that pi(n) = i and pj(n) = j. However, G
is a filter, so pi and pj are compatible and there is some p ∈ G such that pi, pj ⊆ p. In
particular it must be that i = j, since p is a function. As we saw before, given any real
number f ∈ V , the set Df = {p ∈ Add(ω, 1) | p ⊈ f} is dense, and so there is a condition
in G which disagrees with f , so c ̸= f . Finally, working in V [c], it is not hard to see that
G = {p ∈ Add(ω, 1) | p ⊆ c} = {c ↾ E | E ∈ [ω]<ω}.

Remark. It is often the case that we are adding a particular function or a real and consider
⋃
G,

where G is our generic filter. We call this function or real number “the associated real”.

We say that a real number r is Cohen generic if there a V -generic filter H ⊆ Add(ω, 1) such
that r =

⋃
H.

Theorem 3.3. Suppose that x ∈ V [c] is a real number, then either x ∈ V or there is a Cohen
generic r such that V [x] = V [r].
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Proof. Assume that x /∈ V and let ẋ be a name for x. Let us define a projection from Add(ω, 1)
by describing an equivalence relation: p ∼x q if and only if

∀n ∈ ω∀ε ∈ 2, p ⊩ ẋ(ň) = ε̌ ⇐⇒ q ⊩ ẋ(ň) = ε̌.

We let P = Add(ω, 1)/∼x with the ordering given by [q] ≤P [p] if and only if there is some
q′ ∈ [q] and p′ ∈ [p] such that q′ ≤ p′. We claim that this is forcing notion is without atoms. If
p is any condition, since x /∈ V , it is impossible that p have decided all the information about ẋ,
so there is some n such that p ̸ ⊩ ẋ(ň) = 0̌ and p ̸ ⊩ ẋ(ň) = 1̌. Let q0, q1 be suitable extensions
of p such that qε ⊩ ẋ(ň) = ε̌, then q0 ≁x q1, and moreover it is impossible for [q0] and [q1] to
have a compatible extension in P.

We next claim that p 7→ [p] is a projection. It is easy to see that [1Add] = 1P as the
maximum, and by the very definition we have that if q ≤ p, then [p] ≤P [q]. It remains to verify
that if [p′] ≤P [p] then there is some q ≤ p such that [q] ≤P [p′]. But indeed, the very definition
of [p′] ≤P [p] was that there is some q ≤ p such that q ∼x p

′. We can simplify P by considering
instead of [p], the set of partial functions f : ω → 2 such that there is some p ∈ Add(ω, 1) for
which f(n) = ε ⇐⇒ p ⊩ ẋ(ň) = ε̌, and ordering these functions by reverse inclusion.

We therefore have that P is isomorphic to the Cohen forcing. It is enough to show that
x is the generic real associated with P when using the generic H obtained from G under the
projection map above. And indeed, if H ⊆ P is a generic filter, we can define a real xH =

⋃
H

when considering P presented as partial functions. It is not hard to see, by the definition of this
presentation, that xH = x, and that indeed H = {f ∈ P | f ⊆ x}.

Theorem 3.4. Suppose that A ∈ V [c] is a set of ordinals, then A ∈ V or there is a Cohen
generic r such that V [A] = V [r].

Proof. Assume that A /∈ V and that Ȧ is a name for A. We define for each p ∈ Add(ω, 1) the
set of ordinals Ap = {ξ ∈ Ord | p ⊩ ξ̌ ∈ Ȧ}. The collection {Ap | p ∈ Add(ω, 1)} is certainly
countable, and it is not hard to verify that A =

⋃
p∈GAp. Proceeding in a similar fashion as in

the previous proof, we can construct a countable forcing whose generic function is A, or rather
its characteristics function, as wanted.

We will generalise this proof and finish this section by studying an important property of
the Cohen forcing: the size of its antichains.

Definition 3.5. We say that a forcing P satisfies the countable chain condition (c.c.c.) if every
antichain in P is countable.

Trivially, since Add(ω, 1) is countable, it is c.c.c. Let us prove a general theorem.

Exercise 3.1. P is c.c.c. if and only if B(P) is c.c.c.

Theorem 3.6. Suppose that P is a c.c.c. forcing, if G is a generic filter, then V and V [G]
agree on cofinalities (and therefore cardinals).

Proof. Let α be an ordinal in V . It is enough to argue that if α was regular in V , it remains
regular in V [G]. If α was singular and cfV (α) ̸= cfV [G](α), then cfV (α) must have changed its
cofinality as well. And in the case that α was singular and is simply no longer a cardinal, we
note that a singular cardinal is a limit cardinal, if µ = |α|V [G], then α = (µ+)V is a regular
cardinal which must also have cardinality µ in V [G] and changed its cofinality.
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Suppose that µ = cfV [G](α) and f : µ → α is a cofinal and increasing function in V [G],
for each ξ < µ there is a maximal antichain Dξ of conditions which decide the value of f(ξ).
Formally, we fix ḟ to be a name for f , and without loss of generality we can assume that
1 ⊩ “ḟ : µ̌ → α̌ is cofinal and increasing” (otherwise, find some p ∈ G forcing that and consider
P ↾ p).

We choose a maximal antichain, Dξ, inside the dense open set {p | ∃β, p ⊩ ḟ(ξ̌) = β̌}. By
c.c.c., each such antichain must be countable. Let Aξ = {β < α | ∃p ∈ Dξ, p ⊩ ḟ(ξ̌) = β̌}, then
each Aξ is countable, and since Dξ is a maximal antichain, these are in fact all the possible
values for f(ξ). In other words, 1 ⊩ ḟ(ξ̌) ∈ Ǎξ.6

Let g(ξ) = supAξ. Since α was uncountable and regular, g(ξ) < α. Since f is increasing, it
must be that g is non-decreasing; since f was forced to be cofinal, it must also be that g cofinal
as well, as clearly f(ξ) ≤ g(ξ) for all ξ. But since g ∈ V , and α was regular, and µ ≤ α, then it
must be that µ = α as wanted.

Exercise 3.2. Rewrite the above proof entirely internally to V using the forcing relation.

3.2 Hechler forcing

Definition 3.7. Let f, g ∈ ωω, we write f ≤∗ g to denote that there is some m such that for
all n ≥ m, f(n) ≤ g(n). We say, in this case, that g (eventually) dominates f .

Exercise 3.3. If {fn | n < ω} ⊆ ωω, then there is some f such that fn <
∗ f for all n.

We define the H forcing as the partial order given by ordered pairs, p = ⟨s, F ⟩ where s ∈ ω<ω

and F ⊆ ωω is a finite set. The ordering of Hechler forcing is defined as ⟨sq, Fq⟩ ≤ ⟨sp, Fp⟩ if
and only if

1. sp ⊆ sq and Fp ⊆ Fq.

2. For any n ∈ dom sq \ p and any f ∈ Fp, f(n) < sq(n).

We will often refer to sp as the stem of p.

Proposition 3.8. The Cohen forcing is a projection of H.

Let G be a generic for the Hechler forcing, and let d be
⋃

{sp | p ∈ G}.

Proposition 3.9. d : ω → ω.

Exercise 3.4. Show that G ∈ V [d]. Namely, that we can reconstruct G from the real it defines.

Theorem 3.10. d dominates any f : ω → ω such that f ∈ V .

Proof. Let f be a function in V , define Df = {⟨s, F ⟩ | f ∈ F}. We first show that Df is dense.
Indeed, if ⟨sp, Fp⟩ is a condition in H, simply take ⟨sp, Fp ∪ {f}⟩ as a condition in Df . Now, if
⟨s, F ⟩ ∈ Df , then it must be that any condition extending it must dominate f from |s| onwards.
In particular, f <∗ d.

Theorem 3.11. H is a c.c.c. forcing.

Proof. It is enough to show that any two conditions with the same stem are compatible, but
this is trivial by the definition of the order.

6This is actually a characterisation of c.c.c., in a sense, as we will see in the future.
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Theorem 3.12. H is not isomorphic to the Cohen forcing.

Proof. It is enough to show that Add(ω, 1) does not add any single function which dominates all
the ground model reals. Suppose that ṙ was an Add(ω, 1)-name which was forced to dominate
any ground model function.

For each p ∈ Add(ω, 1) define, in the ground model, a decreasing sequence qp
n and a function

fp such that qp
n ⊩ ṙ ↾ ň = f̌p ↾ ň. Let f be a function which dominates all of {fp | p ∈ Add(ω, 1)}.

Suppose that for some n, p ⊩ ∀m ≥ n(f̌(m̌) < ṙ(m̌)), take m > n to be such that fp(m) < f(m),
then we have that p ⊩ f̌p(m̌) < f̌(m̌) < ṙ(m̌). However, qp

m+1 ≤ p and qm+1 ⊩ ṙ(m̌) = f̌p(m̌)
which is impossible.

3.3 Collapsing cardinals

We saw two examples of forcings which preserve cardinals, i.e., if κ is a cardinal in V , then it is
also a cardinal in V [G], and indeed they have the same cofinality as well.7 Let us see the most
basic example for this failure to fail. We say that a forcing P collapses a cardinal κ, if κ is no
longer a cardinal after forcing with P.8

Definition 3.13. Let κ be an infinite ordinal, the partial order Col(ω, κ) is given by finite
partial functions p : ω → κ, ordered by reverse inclusion.

Exercise 3.5. Show that Col(ω, κ) ∼= κ<ω, where the latter is ordered by reverse inclusion; conclude
that if κ is a countable ordinal, then Col(ω, κ) ∼= Add(ω, 1).

Theorem 3.14. 1 ⊩ |κ̌| = ℵ0.

Proof. Let G be a V -generic filter and let g =
⋃
G, we claim that g : ω → κ is a surjection.

First, note that for any n < ω, Dn = {p ∈ Col(ω, κ) | n ∈ dom p} is a dense open set, and
therefore g is defined on all of ω. It is a function by a similar density argument. Finally, for
any α < κ, let Dα = {p ∈ Col(ω, κ) | α ∈ rng p}, then Dα is a dense open set, as for any p,
p ∪ {⟨n, α⟩} ∈ Dα for n /∈ dom p. Therefore α ∈ rng g for all α < κ.

Definition 3.15. We say that a forcing notion P satisfies the κ-chain condition (κ-c.c.) if there
are no antichains in P of size κ.

Exercise 3.6. Suppose that λ is singular, if P is λ-c.c., then it is κ-c.c. for some κ < λ.

Theorem 3.16. A λ-c.c. forcing preserves cofinalities ≥ λ. In particular, 1 ⊩Col(ω,κ) κ̌
+ = ω̇1.

The proof of this theorem is the same as the proof of Theorem 3.6.

Definition 3.17. We say that Q absorbs P if 1Q ⊩Q “∃H ⊆ P, V -generic”.

It is true that if P <◦ Q, then P is absorbed by Q, but the converse need not be true.
For example, consider the atomic partial order which is simply an antichain of size 2ℵ1 (and a
maximum). Since the generic filter is just one of the elements in the antichain, it gets absorbed
by every forcing, even by the Cohen forcing which is much smaller. We will see later, however,
that if Q absorbs P, then there is some p ∈ P such that P ↾ p <◦ Q.

7It is possible to change a regular cardinal into a singular cardinal, but this requires large cardinals.
8We will sometimes, quite confusingly so, use the term “collapse” to mean that κ became the successor of

some other cardinal, that is, in our terminology, we have collapsed all the cardinal in a certain interval.
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Exercise 3.7. If P is a forcing notion of size |κ|, then Col(ω, 2κ) absorbs P.

Theorem 3.18. Let P be a forcing notion, then Col(ω, |P|) absorbs P.

Proof. Let G ⊆ Col(ω, |P|) be a V -generic filter and let g =
⋃
G be the generic surjection it

defines. We will use it to define a V -generic filter for P. Simply consider f(0) = g(0) and
f(n+ 1) = g(m) where m = min{k | g(k) ≤P f(n)}. We claim that F = {p ∈ P | ∃n, f(n) ≤ p}
is a V -generic filter. The only non-trivial part is genericity.

Note that if p ∈ P and D ⊆ P is a dense open set (in V ), then for any c ∈ Col(ω, |P|) and for
any n, there is some c′ ≤ c and some m ≥ n such that c′(m) ∈ D and c′(m) ≤P p. Therefore,
by the genericity of G we are guaranteed that F ∩D ̸= ∅ for any dense open D ∈ V .

Theorem 3.19. Suppose that P is a forcing notion without atoms such that |P| = κ and
1 ⊩ |κ̌| = ℵ0. Then P ∼= Col(ω, κ).

Proof. If κ = ℵ0, then we already know that P ∼= Col(ω, ω) ∼= Add(ω, 1). So we may assume
that κ is uncountable. We claim that below any condition p there is a maximal antichain of
size κ. Otherwise, there will be some p such that P ↾ p has κ-c.c., in which case it is impossible
that p ⊩ |κ̌| = ℵ0.

Let ġ be a name such that 1 ⊩ “ġ : ω̌ → Ġ is a surjection”.9 We define a sequence of
antichains, Cn, such that if p ∈ Cn, then p decides ġ ↾ ň. We let C0 = {1}; suppose that Cn was
defined, find below each p ∈ Cn a maximal antichain of size κ, Cp

n+1, such that q ∈ Cp
n+1 have

decided the value of ġ(ň), finally, let Cn+1 be
⋃

{Cp
n+1 | p ∈ Cn}. It is easy to see that Cn+1

satisfies the recursion hypothesis.
Finally, it is not hard to see that C =

⋃
{Cn | n < ω} is a partial order which is isomorphic

to κ<ω. We claim that it is in fact dense. Since 1 forced that ġ is onto Ġ and p ⊩ p̌ ∈ Ġ, it
must be the case that p ⊩ ∃n, ġ(n) = p̌. Letting q ≤ p be an extension of p which decides the
value of such n. There is some r ∈ Cn+1 which is compatible with q, since Cn+1 is a maximal
antichain, but that means that r ⊩ ġ(ň) = p̌ and in particular r ⊩ p̌ ∈ Ġ. But this can only
happen if r ≤ p, and so C is dense.

Of course, if we collapsed any cardinal, and ω1 in particular, we have added new real numbers
to the universe. First by the virtue of adding a generic for the Cohen forcing, but also if we
consider the fact that we now have a real number which codes a well-ordering of ω which is
isomorphic to ωV

1 .
We will soon see some conditions that guarantee no new real numbers are added. But first

we want to utilise what we have so far and finally prove an important result.

3.4 The failure of the Continuum Hypothesis

Definition 3.20. Let κ be a cardinal. The partial order Add(ω, κ) is given by finite partial
functions p : κ× ω → 2.

Theorem 3.21. Add(ω, κ) is a c.c.c. forcing.

Proof. If κ is finite or countable, then the partial order is countable and there is nothing to
check. We can assume, therefore, that κ is uncountable. Let D be a maximal antichain in
Add(ω, κ) and let θ be a large enough regular cardinal (we mainly want | P(Add(ω, κ))| < θ in

9Here Ġ is the canonical name of the generic filter.
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this case). We take M ≺ H(θ) = {x | | tcl(x)| < θ} to be a countable elementary submodel such
that Add(ω, κ), D ∈ M .10 If p ∈ D, let pM = p∩M , since p is finite to begin with, pM ∈ M for
all p. We call pM the “projection” of p into M .

Since D is an antichain, if p, q ∈ D are distinct, they must be compatible. If p /∈ M and q ∈
M , however, it must be that pM is already incompatible with q, since dom(p\pM )∩dom(q) = ∅,
so the two must be compatible. However, since D is a maximal antichain it must be the case that
M also thinks that D is maximal, so for any p, there is some q ∈ D∩M such that M |= q || pM .
In particular, for any p ∈ D \M , which is impossible. Therefore D must be countable.

Remark. Normally, the proof goes through a combinatorial lemma called the “∆-system lemma” (or
the sunflower lemma) which is used to show that given any uncountable set of conditions, there is a
finite “root” which uncountably many are disjoint outside that root. This would imply that not only
every antichain is countable, but that given any uncountably many conditions, there are uncountably
many of them which are pairwise compatible. This property is known as “Knaster property”.

Exercise 3.8 (**). Extend the above proof to a proof that Add(ω, κ) has the Knaster property.

Corollary 3.22. Add(ω, κ) is a cofinality-preserving forcing.

Theorem 3.23. If G is a V -generic filter for Add(ω, κ), then V [G] |= (κω)V ≥ 2ℵ0 ≥ κ.

Proof. Let G be a V -generic filter and let g =
⋃
G, then g : κ × ω → 2. We claim that if

α ̸= β, then g(α, ·) ̸= g(β, ·) as two real numbers, and that both are not in V . We use the
standard density argument. If p is any condition, then there is some large enough n such that
⟨α, n⟩, ⟨β, n⟩ are both not in the domain of p. Then p ∪ {⟨⟨α, n⟩, 0⟩, ⟨⟨β, n⟩, 1⟩} is a stronger
condition which forces that these two are different. Similarly, the proof that g(α, ·) ̸= f for all
f ∈ V is the same as we have seen before.

It follows now that 2ℵ0 ≥ κ. We will show that there are at most κω reals in V [G]. If
x ∈ V [G] is a real number, fix a name ẋ ∈ V for x. By c.c.c., for each n there is a countable
and maximal antichain Dx,n such that p ∈ Dx,n decides the value of ẋ(ň). Let us define

ẋ∗ = {⟨p, ⟨ň, ε̌⟩•⟩ | p ∈ Dx,n, p ⊩ ẋ(ň) = ε̌}.

Claim. 1 ⊩ ẋ = ẋ∗.

Proof of Claim. Suppose not, then there is some p ⊩ ẋ ̸= ẋ∗, and by extending if necessary,
we can assume there is some n < ω such that p ⊩ ẋ(ň) ̸= ẋ∗(ň). Since Dx,n was a maximal
antichain, there is some q ∈ Dx,n which is compatible with p. However, by definition we have
that q ⊩ ẋ(ň) = ẋ∗(ň). So this is impossible, since if r ≤ p, q then r ⊩ ẋ(ň) = ẋ∗(ň) ̸= ẋ(ň).

In V , each ẋ∗ is a countable set. Each name is easily identified with a subset of κ× ω × 2,
so we have that there are at most κω distinct names of this form in V , and therefore the left
inequality holds.

Corollary 3.24. If G ⊆ Add(ω, κ) is V -generic, then every real is in V or Cohen over V .

Corollary 3.25. Assume that V |= GCH and let κ be any cardinal of uncountable cofinality. If
G ⊆ Add(ω, κ) is V -generic, then V [G] |= 2ℵ0 = κ.

10It is enough to ask that κ ∈ M in this case, and if κ is definable, e.g. ω1, this will always be true.
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Chapter 4

Combinatorial properties and
forcing above the reals

4.1 Closure

Definition 4.1. We say that a partial order P is κ-closed if for any γ < κ and any descending
sequence ⟨pα | α < γ⟩ of conditions in P, there is some p ∈ P such that p ≤P pα for all α. In the
case where κ = ω1, we will often use “σ-closed”.

Theorem 4.2. If P is σ-closed, then P does not add new functions with domain ω into the
ground model.11 In particular, no new reals are added and ω1 is not collapsed.

Proof. Suppose that ḟ is a P-name and p ⊩ ḟ : ω̌ → X̌ for some set X. We define by recursion
a descending sequence, p0 = p and pn+1 ≤ pn is some extension such that pn+1 ⊩ ḟ(ň) = x̌n

for some xn ∈ X. We have a countable descending sequence, so by σ-closure we have some q
which stronger than all of the conditions on the sequence. Therefore, for all n, q ⊩ ḟ(ň) = x̌n.
In other words, q ⊩ ḟ = ǧ, where g(n) = xn.

Exercise 4.1. Show that if P is κ-closed, then P does not add sequences of ground model elements
of length < κ. In particular, if P is κ-closed, it will not add any bounded subsets to κ.

Exercise 4.2. Show that if P is κ-closed and has the κ-c.c. then P is trivial, i.e. the set of atoms
is dense. Conclude that if P is ω-c.c., then it is trivial.

Exercise 4.3. Show that an atomless complete Boolean algebra is never κ-closed for κ > ω.12

Definition 4.3. Let κ and λ be two cardinals with κ infinite. Then Add(κ, λ) is the partial
order whose conditions are partial functions p : λ × κ → 2 with |p| < κ, ordered by reverse
inclusion.

Exercise 4.4. If 0 < λ ≤ κ, then Add(κ, λ) ∼= Add(κ, 1) ∼= κ<κ.

Exercise 4.5. Suppose that κ is a singular cardinal, then Add(κ, 1) collapses κ to its cofinality.

Theorem 4.4. Let κ be an infinite regular cardinal and let λ > 0. Then Add(κ, λ) is κ-closed
and it has (κ<κ)+-c.c. In fact, if G is a V -generic filter, then V [G] |= κ<κ = κ.

11We will refer to such a function as a “sequence of ground model elements”.
12In this case we will usually talk about a “κ-closed dense subset” instead.
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Proof. We can split this into two cases. The first where λ ≤ κ. In this case, we can assume
that λ = 1. Note that | Add(κ, 1)| ≤ κ<κ, since any condition is a subset of size < κ of κ × 2.
And so in this case, the chain condition is trivially true. To see that the forcing is κ-closed, we
use the regularity of κ to observe that if γ < κ and {pα | α < γ} is a descending sequence of
conditions, then p =

⋃
α<γ pα is a condition.

Finally, in this case, take f : γ → 2 for some γ < κ, coding a bounded subset of κ, then
given any p ∈ Add(κ, 1) we can extend p by defining first the shift of f by an ordinal α, namely,
fα = {⟨α+β, f(β)⟩ | β < γ}, and then simply taking α = sup dom p+1 and note that p∪fα is a
condition extending p. Therefore, by a density argument, if G is a V -generic filter and g =

⋃
G,

then for any γ < κ and f : γ → 2 there is some α < κ such that g ↾ [α, α+ γ) = fα.
In the case where λ > κ, it remains to only prove the forcing is still (κ<κ)+-c.c., which can

be done exactly the same proof as Theorem 3.21, this time taking models of size κ instead of
countable models.

Corollary 4.5. Add(ω1, 1) forces that the Continuum Hypothesis is true.

Proof. Since Add(ω1, 1) is σ-closed, it does not add new real numbers. However, it does force
that ℵℵ0

1 = ℵ1 and therefore it forces that CH holds.

Definition 4.6. Let κ ≤ λ be two infinite cardinals, Col(κ, λ) is the forcing whose conditions
are partial functions p : κ → λ with | dom p| < κ.

Exercise 4.6. Col(κ, κ) ∼= Add(κ, 1). In particular, if κ is singular, Col(κ, κ) collapses κ.

Exercise 4.7. If κ is regular, then Col(κ, λ) is κ-closed and has (λ<κ)+-c.c.

Remark. Unlike the case for ω, Col(κ, λ) need not absorb other forcings or be the unique collapse
of λ.

4.2 Distributivity

Definition 4.7. We say that P is κ-distributive if whenever γ < κ and {Dα | α < γ} is a family
of dense open subsets of P,

⋂
α<γ Dα is a dense open subset of P.13

Exercise 4.8. Given a family of maximal antichains A in a forcing P a refinement is a maximal
antichain A such that for all D ∈ A, if q ∈ A is compatible with p ∈ D, then q ≤ p. Show that P
is κ-distributive if and only if every family of < κ maximal antichains has a refinement. Conclude
that every finite family of maximal antichains has a refinement.

Theorem 4.8. P is κ-distributive if and only if P does not add sequences of ground model
elements of length γ for any γ < κ.

Proof. Suppose that P is distributive and let ḟ be a name such that 1 ⊩ ḟ : γ̌ → X̌ for some
γ < κ and X ∈ V . For every α < γ, the set Dα = {q ≤ p | ∃x ∈ X, q ⊩ ḟ(α̌) = x̌} is a dense
open set below p. By κ-distributivity, D =

⋂
α<γ Dα is dense. Defining for q ∈ D, fq(α) = x if

and only if q ⊩ ḟ(α̌) = x̌ provides us with a function in the ground model such that q ⊩ ḟ = f̌q.
Therefore, 1 must have already forced that ḟ is going to be in the ground model.

13Note that the intersection of open sets is always open in the context of forcing. It is enough to talk about
density.
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In the other direction, suppose that γ < κ and Dα = {pα
i | i < ηα} is a maximal antichain

for α < γ. Define the following name,

ḟ = {⟨pα
i , ⟨α̌, p̌α

i ⟩•⟩ | i < ηα, α < γ}.

If G is a V -generic filter, since each Dα is a maximal antichain, ḟG(α) is the unique element of
Dα ∩G. In particular, ḟ is a name for a sequence of ground model elements of length γ. By the
assumption, ḟG is in V for any generic G. In other words, 1 must force this name interprets as
a ground model function. Let D be a maximal antichain such that for any q ∈ D there is some
fq such that q ⊩ ḟ = f̌q. It is not hard to verify that D is a refinement of {Dα | α < γ}.

Corollary 4.9. If P is κ-closed, then it is κ-distributive.

Remark. We used the Axiom of Choice quite heavily in this proof. The statement “P is κ-closed
implies P is κ-distributive” is itself equivalent to a choice principle known as DC<κ. Moreover,
ZF + DCλ cannot prove the equivalence in Theorem 4.8 (for any κ!!!).

4.3 Club shooting

Recall that a subset A ⊆ κ is closed if for all β < κ, sup(A ∩ β) ∈ A. We say that A is a club
if it is closed and unbounded if it is a closed subset of κ and supA = κ. We say that A ⊆ κ is
stationary if it has a non-empty intersection with every club.

Theorem 4.10. Suppose that S ⊆ ω1 is unbounded. We define Club(S) to be the forcing whose
conditions are closed subsets of S ordered by end-extensions. Namely, q ≤ p if and only if
q ∩ max p+ 1 = p. Then:

1. If G is a V -generic filter, then
⋃
G is a club which is a subset of S. In particular, if S is

co-stationary, Club(S) destroys the stationarity of ω1 \ S.

2. Club(S) is σ-closed if and only if S is a club.

3. Club(S) is σ-distributive if and only if S is stationary. In particular, Club(S) does not
collapse ω1 when S is stationary.

We call the forcing Club(S) “club shooting”. This forcing can be generalised to arbitrary
regular cardinal κ and will have similar properties when S is a fat stationary set. Where a
stationary set S is fat if for all α < κ and all clubs C ⊆ κ, there is a closed subset of A ∩ C of
order type α. In the case where κ = ω1, all stationary sets are fat.

Proof. The first property is easily proved by the usual density arguments. We will prove the
other two. It is also not hard to see that if S is a club and {pn | n < ω} is a descending
sequence of conditions, then let p− =

⋃
{pn | n < ω}, if it is a condition in Club(S), we are

done, otherwise by S being closed, p = p− ∪{sup p−} is a condition. Similarly, if S is not a club,
it is either non-stationary, in which case it adds a new real; or it is unbounded and there is some
increasing sequence αn ∈ S such that α = supn<ω αn /∈ S. Therefore taking pn = S ∩ αn + 1
gives us a descending sequence with no lower limit, as any p which is a lower limit must be
closed and thus contain α.

For the third property, if S is non-stationary, let C be a club disjoint from S, as we added a
club subset of S, in V [G] we can write ω1 as the union of two closed and unbounded sets, but
this is impossible if ω1 is regular, so it mus have collapsed and new reals were added.
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Finally, suppose that S is stationary and let Dn be dense open sets for n < ω. Given some
p ∈ Club(S) we find some countable elementary submodel M ≺ H(θ) for a regular cardinal
θ > 22ℵ1 , such that S, p, and the sets Dn are all members of M , and δ = M ∩ ω1 ∈ S. The
reason we can find such M with δ ∈ S is that S is stationary, so we may start with some
M0 satisfying the other requirements, take elementary extensions, Mα, with more and more
countable ordinals, and take unions at limit steps. Since this chain is elementary, it is not hard
to see that the set of Mα ∩ ω1 forms a club, so we can find M with δ ∈ S.

Since M is countable we may assume without loss of generality that {Dn | n < ω} are all
the dense open sets of Club(S) inside M . We can find a descending sequence in Club(S) ∩ M
of conditions such that pn ∈ Dn and p0 ≤ p. Let q =

⋃
{pn | n < ω} ∪ {δ}. We claim that

q ∈ Club(S). For this it is enough to show that supn<ω max pn = δ. But since 1 ⊩ sup
⋃
Ġ = ω̌1,

this must be true inH(θ) and therefore inM , so for any α < δ, the set of conditions with ordinals
above α is a dense open set inside M , so it must be one of the Dns. Since each Dn was dense
and open, it has to be that q lies in their intersection, as wanted.

Theorem 4.11. Let κ be a regular cardinal, P a forcing, and G ⊆ P be a V -generic filter.

1. If P is κ-.c.c., then every club C ⊆ κ in V [G] contains a club from V . Therefore P
preserves stationary subsets of κ.

2. If P is κ-closed, then it preserves stationary subsets of κ.

In particular, c.c.c. forcings preserve clubs and stationary sets, so Club(S) is not c.c.c.

Proof. Suppose that P is κ-c.c., and let p ∈ P and Ċ be such that p ⊩ “Ċ ⊆ κ̌ is a club”. We
define D = {α < κ | p ⊩ α̌ ∈ Ċ}, and we claim that D is a club. If supD ∩ β = β, then
p ⊩ sup Ċ ∩ β̌ = β̌, and therefore β ∈ D, so D is closed. We need to show that it is unbounded.

Let α0 < κ we define a sequence of ordinals by recursion. Suppose that αn was defined, since
p forces Ċ to be unbounded, there is a maximal antichain below p, Dn, such that if q ∈ Dn,
then for some γq > αn, q ⊩ γ̌q ∈ Ċ, use the mixing lemma to create a name γ̇n. By κ-c.c. and
the regularity of κ, αn = sup γq. Since p ⊩ γ̇n ∈ Ċ for all n < ω, then p ⊩ sup γ̇n ∈ Ċ as well.
However, p ⊩ γ̇n ≤ α̌n < γ̇n+1, so p ⊩ sup α̌n = sup γ̇n, as wanted.

Suppose that P is κ-closed, if S ⊆ κ was stationary in V , let Ċ be a name such that
p ⊩ “Ċ ⊆ κ̌ is a club”. We construct a decreasing sequence of conditions of length κ, pα, such that
p0 = p and pα decided the first α+1 members of Ċ. Let D be the club {ξ < κ | ∃α, pα ⊩ ξ̌ ∈ Ċ},
then D ∩ S ̸= ∅. So p has an extension which forces Ċ ∩ Š ̸= ∅.

Exercise 4.9. Let P be the forcing whose conditions are pairs ⟨s,F⟩ where s ⊆ ω1 is a closed and
bounded set and F is a countable family of clubs. Define ⟨sq,Fq⟩ ≤ ⟨sp,Fp⟩ when sq ∩max sp +1 =
sp and Fp ⊆ Fq, and sq \ sp ⊆

⋂
Fp. Show that P is σ-closed and adds a club. Moreover, show

that this club is almost contained in any other club from V . (Compare this to Hechler forcing.)

4.4 Suslin trees

Definition 4.12. We say that a tree T is a Suslin tree if it has height ω1 and no uncountable
antichains.14,15 We will implicitly assume that T is a normal tree: every node has an extension
to any level of the tree, every node is a splitting node, and any chain in the tree has at most a
single upper bound in a given level. When we force with the tree we take its reverse order.

14Note that antichains in the “order sense” match with the “forcing sense” when the partial order is a tree.
15Since every level is an antichain, all levels are countable. So a Suslin tree is an Aronszajn tree.
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Theorem 4.13. Suppose that T is a Suslin tree, then T is σ-distributive and c.c.c., in particular
it is not σ-closed.

Proof. That T is a c.c.c. forcing is by definition. Suppose that {Dn | n < ω} is a family of
maximal antichains, since each is countable there is αn such that Dn is contained in the levels
below αn. By regularity of ω1, α = supn<ω αn is a countable ordinal, taking the αth level of
the tree is now a refinement of {Dn | n < ω}.

Theorem 4.14. Suppose that P adds a subset to ω1 and is σ-distributive and c.c.c., then P
projects onto a Suslin tree.

Proof. Let ḟ be a name such that 1 ⊩ ḟ : ω̌1 → 2̌ and that it is not in the ground model.
Since P is σ-distributive, it must be that all of its initial segments lie in the ground model.
However, since P is c.c.c. there can only be countably initial segments of any given length. Let
Tα = {t : α → 2 | ∃p ∈ P, p ⊩ ť = ḟ ↾ α}, then T =

⋃
{Tα | α < ω1} is a Suslin tree and the

function mapping p ∈ P to its maximally decided initial segment is the projection.

Exercise 4.10 (*). In the previous theorem, show that if P has (a dense subset of) size ℵ1, then P
is forcing equivalent to a Suslin tree.

One is left to wonder. Are there Suslin trees in the universe? If V = L holds, then the
answer is yes; more generally if ♢ holds, then the answer is yes. However, it is consistent that the
answer is no, as we will see later. Regardless, one can always add Suslin trees to the universe.

Theorem 4.15. There is a σ-closed forcing which adds a Suslin tree.

Proof. Let P be the forcing whose conditions are countable, ω-splitting, normal trees of count-
able height, ordered by end-extension. Namely, if T0, T1 are two conditions in P, then T1 ≤ T0
when there is some α such that T0 = T1 ↾ α.

It is not hard to see that P is σ-closed and that if G is a V -generic filter and T =
⋃
G,

then T is a normal tree of height ω1. Suppose that Ȧ was a name such that T0 ⊩ “Ȧ ⊆ Ṫ is a
maximal antichain”. We will show that there is some T∗ ≤ T0 such that T∗ decides all the values
of Ȧ ∩ Ť∗ and that it is a maximal antichain there. In this case, any further extension cannot
add new elements to Ȧ, since those will be have to extend some node from T∗, and therefore
some node in that intersection. Therefore, this would mean that T∗ will force that Ȧ is in fact
a subset of T∗ and therefore countable.

To find this T∗ we first assume that T0 has a maximal level, α0, or else we can extend it
to one which has. We enumerate this level as {tn | n < ω}, and then we define a decreasing
sequence of conditions, T0,n such that T0,n contains t for which T0,n ⊩ ť ∈ Ȧ ∧ ťn || ť. Let T1 be
a lower bound of the T0,n which has a maximal level, α1. Repeat the process by recursion and
let T∗ =

⋃
n<ω Tn. We claim that T∗ is as wanted.

If t ∈ T∗, then there is some Tn such that t ∈ Tn, therefore in Tn+1 we have decided a
condition in Ȧ which is compatible with t, so this condition must already be in T∗, and T∗ must
agree with that decision. Therefore {t ∈ T∗ | T∗ ⊩ ť ∈ Ȧ} is a maximal antichain in T∗. So by
density argument, any antichain in T , the generic tree, is bounded.

Remark. The above is quite similar to the proof that L has a ♢ sequence or that ♢ provides us with
a Suslin tree. The reason is that we can use <L or the ♢ in lieu of a generic to provide us with
these sort arguments.

Remark. It is a far more difficult and involved construction, but Add(ω, 1) also adds a Suslin tree.
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Chapter 5

Combining forcing notions in the
ground model

5.1 Finite products

Definition 5.1. Suppose that P and Q are two notions of forcing. We define the order on P×Q
as ⟨p1, q1⟩ ≤ ⟨p0, q0⟩ if and only if p1 ≤ p0 and q1 ≤ q0.

Exercise 5.1. P,Q <◦ P × Q ∼= Q × P.

Theorem 5.2. Suppose that G×H is a V -generic filter for P×Q, then G is in fact V [H]-generic
and H is V [G]-generic.

Proof. We will show that H is V [G]-generic. Suppose that D ∈ V [G] is a dense open subset
of Q, then D has a P-name, Ḋ, and without loss of generality 1P ⊩P “Ḋ ⊆ Q̌ is dense”. Let
D∗ = {⟨p, q⟩ | p ⊩P q̌ ∈ Ḋ}, then since Ḋ is forced to be dense, for any ⟨p, q⟩ ∈ P × Q there is
some ⟨p′, q′⟩ such that p′ ≤ p, q′ ≤ q and p′ ⊩ q̌′ ∈ Ḋ. In other words, D∗ is a dense subset of
P × Q. Since G×H is V -generic for the product, there is some ⟨p, q⟩ ∈ D∗ ∩G×H, but then
p ⊩P q̌ ∈ Ḋ, and since p ∈ G we have that D ∩H ̸= ∅.

Corollary 5.3. If P is any atomless forcing and G is a V -generic filter, then G × G is not
V -generic for P × P.

Definition 5.4. Let G ⊆ P and H ⊆ Q be two filters. We say that G and H are mutually
V -generic if G is V [H]-generic and H is V [G]-generic.

We can now rephrase Theorem 5.2 as stating that if G×H is a generic filter for the product,
then G and H are mutually generic. The following theorem shows that the converse is also true.

Theorem 5.5. Suppose that G ⊆ P and H ⊆ Q are mutually generic, then G×H is generic.

Proof. Suppose that D ⊆ P × Q is a dense set in V . Define, in V [G],

DG = {q ∈ Q | ∃p ∈ G, ⟨p, q⟩ ∈ D},

then we claim that DG is a dense subset of Q. If this is indeed the case, then DG ∩H ̸= ∅, and
so there is some ⟨p, q⟩ ∈ D ∩G×H.

If q0 ∈ Q, then the set Dq0 = {p ∈ P | ∃q ≤ q0, ⟨p, q⟩ ∈ D} is a dense subset of P. Indeed, if
p0 ∈ P is any condition, there is some ⟨p, q⟩ ≤ ⟨p0, q0⟩ such that ⟨p, q⟩ ∈ D. Let p ∈ G ∩ Dq0 ,
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then there is some q ≤ q0 such that ⟨p, q⟩ ∈ D, which means that q ∈ DG. Therefore DG is
dense, so there is some q ∈ DG ∩H, as H is V [G]-generic. Therefore ⟨p, q⟩ ∈ D ∩G×H.

Exercise 5.2. Suppose that P and Q are κ-closed, then P × Q is κ-closed.

Exercise 5.3. If T is a Suslin tree, then T × T is not c.c.c.

Remark. It is consistent that there is a Suslin tree T such that T×T collapses ω1, which in particular
shows that the product of two σ-distributive forcings need not be σ-distributive. It is also provable
that if T is Suslin, then there is some c.c.c. forcing P such that P× T collapses ω1, but P need not
be isomorphic to T .

Theorem 5.6. Suppose that P is κ-c.c. and Q is κ-closed, then 1P ⊩ “Q̌ is κ̌-distributive”.

The proof will follow immediately from the two lemmas below.

Lemma 5.7. Suppose that P is κ-c.c. and Q is κ-distributive. If 1Q ⊩ “P̌ is κ̌-c.c.”, then
1P ⊩ “Q̌ is κ̌-distributive”.

Proof. Suppose that ḟ is a P × Q-name for a sequence of ordinals of length γ < κ. Let H be a
V -generic filter for Q, then as per the assumptions we have that in V [H] we still have that P is
κ-c.c., and that ḟH is a P-name for a sequence of ordinals of length < γ. For any α < γ there
is a maximal antichain Aα of conditions in P which decide the value of ḟH(α̌), and by κ-c.c.,
|Aα| < κ. We can therefore restrict ḟH into a name of size < κ in V [H], and therefore we get
that without loss of generality, ḟH ∈ V .

It follows that any γ-sequence of ordinals, for γ < κ, in V [G×H] must be in V [G]. Therefore,
V [G] |= “Q is κ-distributive”, and as we took an arbitrary V -generic G, this is forced by 1P.

Lemma 5.8. Suppose that P is κ-c.c. and Q is κ-closed. Then 1Q ⊩ “P̌ is κ̌-c.c.”

Proof. Let Ȧ be a Q-name for a subset of P of size κ. Define by recursion a descending sequence
qα deciding the first α elements of Ȧ. Now consider {p ∈ P | ∃α < κ, qα ⊩ p̌ ∈ Ȧ}. Since this
set in V and must have size κ, so it is not an antichain. In particular, there is some pα, pβ,
witnessed to be in the set by qα and qβ respectively, which are compatible. Without loss of
generality, α < β, so qβ ⊩ p̌α, p̌β ∈ Ȧ, and therefore qβ cannot force that Ȧ is an antichain.
In particular, any condition extends to one which forces this, so Ȧ cannot be forced to be an
antichain by any condition.

Proposition 5.9. Suppose that P is σ-closed and atomless. Then any forcing Q that adds a
real, and in particular Add(ω, 1), forces that P is not σ-closed.

Proof. Since P is atomless, every condition has at least two incompatible extensions. We con-
struct a copy of 2<ω by recursion starting with p0 = 1P; if s ∈ 2<ω and ps was defined, let ps⌢0
and ps⌢1 be two incompatible extensions of ps. Since P is σ-closed in V , for every f : ω → 2 the
sequence ⟨pf↾n | n < ω⟩ has a lower bound. Moreover, if p ∈ P is a lower bound of any infinitely
many ps, then it defines a function f : ω → 2.

If c is the real added by Q, then {pc↾n | n < ω} is a descending sequence of conditions in P
without a lower bound.
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5.2 General products

Definition 5.10. Suppose that {Pα | α < δ} is a family of forcings. We define
∏

α<δ Pα as the
forcing whose order is given pointwise. That is, q ≤ p if and only if for all α < δ, q(α) ≤α p(α).

Given p ∈
∏

α<δ Pα, the support of p is supp(p) = {α < δ | p(α) ̸= 1α}. We will often
restrict to a subfamily of conditions with a specific type of support. Most commonly, if κ is a
cardinal, then the κ-support product is {p ∈

∏
α<δ Pα | | supp(p)| < κ}. In the case κ = ω, we

will say “finite support”, in the case κ = ω1, we say “countable support”, and in the case where
κ = δ+, we say “full support”.

Exercise 5.4. If κ is an infinite and regular cardinal and λ ≥ 2, then Add(κ, λ) is the κ-support
product

∏
α<λ Add(κ, 1).

Exercise 5.5. Suppose that G is V -generic for
∏

α<δ Pα, then set A ⊆ δ, G ↾A and G ↾ (δ \A) are
mutually generic.

Exercise 5.6. Suppose that Pα is κ-closed for all α < δ, then the product
∏

α<δ Pα is closed when
taking a κ-support or a full support. (This is true in a much broader generality.)

Exercise 5.7 (*). Show that if c is a Cohen real, then in V [c] there is a family {cα | α < 2ℵ0} of
reals such that any two are mutually V -generic. But there is no H which V -generic for Add(ω, ω1).

Proposition 5.11. Suppose that δ ≥ ω and for each α < δ, Pα contains at least two incompat-
ible conditions. Then the finite support product

∏
α<δ Pα adds a Cohen real.

Proof. It is enough to prove this for the case δ = ω. Let pn ∈ Pn be a condition which is not
1n,16 then we can project the product

∏
n<ω Pn onto Add(ω, 1) by mapping q to c(n) = 0 when

q(n) ⊥n pn and c(n) = 1 when q(n) ≤n pn.

Exercise 5.8. Suppose that for all n < ω, Pn contains an antichain of size ωn. Show that the finite
support product

∏
n<ω Pn collapses ℵω to be countable.

Theorem 5.12. Assume GCH holds and let f : ω → Card be a non-decreasing function such that
cf(f(n)) > ωn. Then there is a cofinality preserving generic extension V [G] where 2ℵn = ℵf(n).

Proof. Let P be the full support product of Add(ωn, ωf(n)) and let G be a V -generic filter for
P. For every n < ω, write Pn = P ↾ n and Pn = P ↾ (n, ω). Then we get that Pn is ωn-closed.
Moreover, if D ⊆ Pn is a maximal antichain, we can find a large enough regular cardinal θ and
an elementary submodel M ≺ H(θ) such that M is ωn-closed, and D,Pn ∈ M . If p ∈ D \ M ,
then p ∩ M ∈ M and must be compatible with some q ∈ D ∩ M , which would be impossible
since p \M is also compatible with q, and so p was compatible with q to begin with. Note that
this proof also shows that P itself is ℵω+1-c.c.

Any cofinality change must occur for an ordinal with cofinality ωn for some n < ω, and
in that case we must have collapsed that ωn. So it is enough to show that no cardinals were
collapsed below ℵω. Since P ∼= Pn × Pn is the product of an ωn-c.c. forcing with an ωn-closed
forcing, by Theorem 5.6 we get that any subset of ωk for k < n is added by Pn. But indeed, Pn

does not collapse ωk for any k < n. So cofinalities are preserved.
Moreover, by the chain condition we have that 1Pn+1 ⊩ 2ℵn = ℵf(n), as wanted.

16Or rather, not 1 of the separative quotient.
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Remark. We can in fact extend this to any set, and indeed the whole class, of regular cardinals.
Namely, starting from a model of GCH, if F : Ord → Card is a definable class function which is
non-decreasing and such that whenever ℵα is regular, cf(F (α)) > ℵα, then there is a cofinality
preserving (possibly class-)generic extension where 2ℵα = ℵF (α) for any regular cardinal.

For that we need to work a bit harder and defined the Easton support on a cardinal κ: a is an
Easton support if for all regular cardinals γ < κ, sup a ∩ γ < γ. We can now define the Easton
support product, and show that it satisfies all of the wanted properties.

Theorem 5.13. The full support product
∏

n<ω Add(ω, 1) collapses 2ℵ0 to be countable. In
other words, it is equivalent to Col(ω, 2ℵ0).

Proof. Let G be a generic for
∏

n<ω Add(ω, 1), which we can think of as a function G : ω×ω → 2.
Given n < ω we define a sequence kn by recursion: k0 = n0, ki+1 = min{k > ki | G(i+1, k) = 1}.
Finally, let rn(i) = G(i, ki).

We claim that if r : ω → 2 is a binary sequence in V , then there is some n < ω such that
rn = r. To see that, note that if p is any condition and r ∈ V is a real number, we can extend
p by letting n = sup dom p(0) + 1, then setting p(0, n) = r(0), and letting ℓ1 = sup dom p(1) + 1
and adding to p(0) the correct number of 0s such that when defining kn, we get k1 = ℓ1, then set
p(1, ℓ1) = r(1), and continue in that fashion. It is clear that the extended condition must force
that rn = r. Now, by density, we get that any ground model real is coded into some rn.

5.3 Lottery sums

Definition 5.14. Suppose that {Pi | i ∈ I} is a family of forcing notions. The lottery sum of
{Pi | i ∈ I} is the partial order {1} ∪ {⟨i, p⟩ | p ∈ Pi} with the order ⟨i′, p′⟩ ≤ ⟨i, p⟩ if and only
if i = i′ and p′ ≤Pi p, and 1 is the maximum element. We denote this sum by

⊕
i∈I Pi.

The idea is that we do not know which forcing we are going to use. Instead we want to let
the generic “decide”. This can be used in a myriad of ways to produce odd counterexamples.
For example, starting with a model of GCH, consider

⊕
n<ω Add(ωn, ωn+2). We violate GCH

below ℵω, but we do not know a priori where this violation with occur.
Or, for example, P =

⊕
α<ω1 Add(ω, 1) will only add a single Cohen real. However, as

a forcing, this partial order is not c.c.c. at all, and therefore not isomorphic to Add(ω, 1).
Therefore, despite the generic extension being characterised by a single real, there are no
dense embeddings from Add(ω, 1) into P. However, this lead us to a natural notion of local
c.c./closure/distributivity.

Definition 5.15. We say that P is locally κ-c.c. if for every p there is some q ≤ p such that
P ↾ q is κ-c.c.

Proposition 5.16. If P is locally κ-c.c., then it is isomorphic to a lottery sum of κ-c.c. forcings.

Proof. Let D = {p ∈ P | P ↾ p is κ-c.c. }, then by definition, this is a dense open set. We can
therefore find a maximal antichain D′ ⊆ D. It is not hard to check that P ∼=

⊕
p∈D′ P ↾ p.

Exercise 5.9. We define locally κ-closed and locally κ-distributive in a similar fashion. Show that
these concepts are redundant. Namely, if P is locally κ-closed/distributive, then it is isomorphic to
a forcing notion that is κ-closed/distributive.

Exercise 5.10. Suppose that Pi is κi-c.c./closed/distributive for i < κ. Analyse the local and global
chain condition/closure/distributivity of

⊕
i<κ Pi in terms of κi and κ.

29



Chapter 6

Iterated forcing

6.1 Two-step iterations

Product forcing is all fun and games, but sometimes the partial order we want to force “in the
next step” is not even in the ground model. For example, perhaps we first added a generic
Suslin tree, and then we wanted to shoot a branch through it? In this case, we can of course
describe this process by first adding a Suslin tree, T , and then a branch b, and simply work
with V → V [T ] → V [T ][b]. But there must be a simpler way.

Definition 6.1. Suppose that P is a forcing notion and Q̇ is a P-name for a forcing notion.
The iteration, P ∗ Q̇, is the set of pairs ⟨p, q̇⟩ such that p ∈ P and 1P ⊩ q̇ ∈ Q̇. The order is
given by ⟨p1, q̇1⟩ ≤ ⟨p0, q̇0⟩ ⇐⇒ p1 ≤ p0 ∧ p1 ⊩ q̇1 ≤ q̇0.

Remark. In the literature this definition is often given as pairs ⟨p, q̇⟩ where p ⊩ q̇ ∈ Q̇. In both
of these cases the problem is, of course, that we may end up with a proper class of names for a
given q̇. There are many ways to restrict this back to a set, for example, we may require that the
name Q̇ is replaced by an ordinal, so now q̇ can be replaced by α̌, and the name of the ordering
on Q̇ becomes “the important bit”. Or, more commonly, we can define an equivalence relation on
P-names, namely ẋ ∼ ẏ ⇐⇒ 1 ⊩ ẋ = ẏ, and then use Scott’s trick to turn the equivalence classes
for those q̇ ∈ Q̇ into only a set of names. We may also skip this option and simply find a rank that
is high enough and insist on the cut-off being there. My personal preference is to require that q̇ is
mixed from names that actually appear inside Q̇.

Exercise 6.1. Show that a lottery sum is a two-step iteration.

Definition 6.2. Let P∗ Q̇ be a two step iteration. If G0 ⊆ P is a V -generic filter and G1 ⊆ Q̇G0

is a V [G0]-generic filter, then G0 ∗G1 is {⟨p, q̇⟩ ∈ P ∗ Q̇ | p ∈ G0, q̇
G0 ∈ G1}.

Theorem 6.3. Let P ∗ Q̇ be a two-step iteration. G is a V -generic filter for P ∗ Q̇ if and only
if there are V -generic G0 ⊆ P and a V [G0]-generic, G1 ⊆ Q̇G0, such that G = G0 ∗G1.

Proof. Suppose that G is a V -generic filter, we define G0 = {p ∈ P | ⟨p, 1̇Q⟩ ∈ G}. We first
claim that G0 is V -generic, and indeed, if D ⊆ P is a dense open set, it is not hard to check
that {⟨p, q̇⟩ | p ∈ D,1P ⊩ q̇ ∈ Q̇} is a dense subset of P ∗ Q̇, so there is some ⟨p, q̇⟩ ∈ G such
that p ∈ D, and of course, if ⟨p, q̇⟩ ∈ G, then ⟨p, 1̇Q⟩ ∈ G as well.

Next, we define G1 = {q ∈ Q̇G0 | ∃⟨p, q̇⟩ ∈ G, q̇G0 = q}. We claim that G1 is V [G0]-generic.
If D ∈ V [G0] is a dense open subset of Q, let Ḋ be a P-name for D in V such that 1P ⊩ “Ḋ ⊆ Q̇
is dense open”. We may assume without loss of generality that if q̇ is a name appearing inside
Ḋ, then 1P ⊩ q̇ ∈ Q̇. Then Ḋ itself is a subset of P ∗ Q̇, and we claim it is predense.
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Pick any ⟨p0, q̇0⟩, then p0 ⊩ ∃q ∈ Ḋ, q ≤Q q̇0, and by The Mixing Lemma there is some q̇∗
such that p0 ⊩ q̇∗ ∈ Ḋ. So, by definition there is some ⟨p, q̇⟩ ∈ Ḋ, such that p is compatible
with p0 and p ⊩ q̇ = q̇∗. Taking any r ≤ p, p0, we get that ⟨r, q̇⟩ ≤ ⟨p0, q̇0⟩, and therefore Ḋ is a
predense set. It follows, therefore, that there is some ⟨p, q̇⟩ ∈ G ∩ Ḋ, so p ∈ G0, and therefore
q̇G0 ∈ G1 ∩ ḊG0 , as wanted. Now, by definition, G = G0 ∗G1.

In the other direction, suppose that G0 ⊆ P and G1 ⊆ Q̇G0 are two suitably generic filters.
We want to show that G0 ∗G1 is V -generic for the iteration. If D ⊆ P ∗ Q̇ is a dense open set,
we first define in V [G0] the set D1 = {q̇G0 | ∃p ∈ G0, ⟨p, q̇⟩ ∈ D}. We claim that this is a dense
subset of Q̇G0 , as given any ⟨p0, q̇0⟩, there is some ⟨p, q̇⟩ ∈ D extending it, and in particular
{p ∈ P | ∃q̇, ⟨p, q̇⟩ ∈ D, p ⊩ q̇ ≤ q̇0} is a dense subset of P, so there is some p ∈ G and q̇ such
that ⟨p, q̇⟩ ∈ D and p ⊩ q̇ ≤ q̇0. So, D1 ∩G1 ̸= ∅, so we can take some q̇G0 in the intersection,
and some p ∈ G such that ⟨p, q̇⟩ ∈ D, and we get that ⟨p, q̇⟩ ∈ D ∩G0 ∗G1, as wanted.

So we see, quite immediately, that P × Q ∼= P ∗ Q̌.

Definition 6.4. Suppose that P0 <◦ P1, and let π : P1 → P0 be a projection witnessing that.
We define the quotient P1/P0 to be the P0-name, {⟨π(p), p̌⟩ | p ∈ P1}, with the obvious order,
{⟨q̌, p̌⟩ | q ≤P1 p}•.

Theorem 6.5. Suppose that P0 <◦ P1, then P1 ∼= P0 ∗ P1/P0.

Proof. Let π : P1 → P0 be the projection map defining the quotient. We will show that the map
p 7→ ⟨π(p), p̊⟩ is a dense embedding, where p̊ is the name obtained by mixing p̌ below π(p) and
1̌P1 on any incompatible condition.

Assume that q ≤P1 p, then we immediately get that π(q) ≤P0 π(p), moreover since q ≤P1 p,
then we have by definition that π(q) ⊩ q̊ ≤P1/P0 p̊. In the other direction, if π(q) ≤ π(p), then
π(q) must interpret correctly both p̊ and q̊, so the order is preserved.

To show density, given any ⟨π(p), ṙ⟩ in the iteration, we may extend π(p) to some π(q) which
decides ṙ = p̌′ for some p′ ∈ P1, this implies that π(q) ≤ π(p′). By the definition of a projection
there is some q′ ≤P1 p such that π(q′) ≤ π(q), and so, ⟨π(q′), q̊′⟩ ≤ ⟨π(p), ṙ⟩, as wanted.

Theorem 6.6. Suppose that G ⊆ P is a V -generic filter, and let x ⊆ V be an element of V [G].
Then there is some Px <◦ P such that x is the V -generic for Px obtained from G. Moreover, there
is a forcing Q ∈ V [x] such that there is H ∈ V [G] which is V [x]-generic, and V [G] = V [x][H].

Proof. We define Px as a quotient of P, similar to what we did in Theorem 3.3. Fix a P-name
ẋ, and without loss of generality consider it as a function ẋ : X̌ → 2̌. Define an equivalence
relation on P, p ∼ q if and only if for all u ∈ X and ε < 2,

p ⊩ ẋ(ǔ) = ε̌ ⇐⇒ q ⊩ ẋ(ǔ) = ε̌.

This defines a quotient (in the order-theoretic sense) of P. Now apply Theorem 6.5.

Exercise 6.2. Suppose that P is κ-closed, and 1P ⊩ “Q̇ is κ̌-closed”, then P ∗ Q̇ is κ-closed.

Theorem 6.7. Let κ be an uncountable regular cardinal. Suppose that P is κ-c.c., and 1P ⊩ “Q̇
is κ̌-c.c.”, then P ∗ Q̇ is κ-c.c.

Proof. Suppose that A = {⟨pα, q̇α⟩ | α < κ} is an antichain in P ∗ Q̇. Given any two α, β, either
pα and pβ are incompatible, or (if they are) every common extension must force that q̇α ⊥ q̇β.
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Let G ⊆ P be V -generic, then in V [G] consider AG = {q̇G
α | pα ∈ G}. By the observation we

made, this set is an antichain in Q̇G, so it must have fewer than κ elements. In other words, as
a P-name, 1P ⊩ |A| < κ̌.

Let B be a maximal antichain in P which decides the upper bound of the indices of elements
in AG in V [G], by regularity and κ-c.c. of P, there is a large enough β < κ such that 1P ⊩ q̇β /∈ A.
This is of course a contradiction, since pβ ⊩P q̇β ∈ A.

Exercise 6.3. Show that the converse is also true. Namely, if P ∗ Q̇ is κ-c.c., then P is κ-c.c. and
1P ⊩ “Q̇ is κ̌-c.c.”, but that this may not be the case for κ-closure.

6.2 General iterations

Definition 6.8. We say that ⟨Pα, Q̇β | β < δ, α ≤ δ⟩ is an iteration system if:17

1. P0 = {1}.

2. For all α < δ, 1Pα ⊩Pα “Q̇α is a forcing notion”.

3. For all α ≤ δ, p ∈ Pα is a function with domain α, and for all ξ < α, 1Pξ
⊩Pξ

p(ξ) ∈ Q̇ξ

and for all β < α, p ↾ β ∈ Pβ.

4. For all α ≤ δ, the order of Pα is given by, q ≤Pα p if and only if for all ξ < α, q ↾ ξ ≤Pξ
p ↾ ξ

and if α = ξ + 1, then we require that q ↾ ξ ⊩Pξ
q(ξ) ≤ p(ξ) as well.

For limit α ≤ δ will usually have a condition on supp(p) = {ξ < α | 1Pξ
⊩Pξ

p(ξ) ̸= 1̇Qξ
}.

We say that Pδ is the iteration of length δ of the Q̇α (with the specified support).

Exercise 6.4. In the definition of an iteration system, if δ = α+ 1, then Pδ
∼= Pα ∗ Q̇α.

We will refer to the Q̇α as “iterands”, and we will usually write 1α and ⊩α instead of Pα

subscripts. Moreover, since we can reconstruct the Pα by knowing the Q̇αs and the support
system at limits, we will often just omit the Pα from the iteration system, or just write that Pδ

is the such and such iteration of a given sequence of names, understanding that Pα will then
denote the partial steps in that iteration.

Given an iteration Pδ and γ < δ, Pγ is “an initial segment” of the iteration. There is a clear
projection map Pδ → Pγ , given by p 7→ p ↾ γ. We will sometimes refer to Pγ as Pδ ↾ γ, which is
useful when subscripts are not used to denote the iteration itself.18

We will mainly work with finite support iterations, but countable, κ-support, and “full
support” will all be mentioned. However, except for the first one, these supports do not play
all too well with the natural quotients of the iteration (that is, Pδ/Pγ). Let us start with an
example.

Let Q0 = Add(ω, 1). If c0 is the Cohen real, Q1 =
∏

n∈c0 Add(ωn+1, 1) as a full support
product, and modifying the forcing slightly to add the generic subset to the interval [ωn, ωn+1).
Let c1 ⊆ ωω be the union of all the generic subsets added by Q1, then Q2 =

∏
α∈c1 Add(ωα+1, 1)

as a full support product with the generic subsets living in the intervals as before.
Let Pω be the full support iteration of this forcing. We want to argue that it does not

collapse cardinals, for example. In the case of products, we separated the product into a finite
17This is a recursive definition, of course.
18We can modify the definition to use partial functions, in which case we simply have supp(p) = dom(p) and

Pγ ⊆ Pδ when γ ≤ δ.
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“initial segment” and a “tail segment”19 arguing that the tail segment is closed and the initial
segment has a nice chain condition.

Ideally, we would like to do this here, so have Pn and Pω/Pn, and argue that 1n ⊩n “Pω/Pn

is sufficiently closed”, or something along those lines. The naive approach is to say that Pω/Pn

is itself a full support iteration of very closed iterands, so it should be. But is the quotient really
a full support iteration? After the first step, we have added a new subset to ω, if this is a full
support iteration, surely we can find a condition whose support are exactly those coordinates.
But if we did, we can “pull” the Cohen real back to the ground model. Of course, in this case,
this is not too much of an issue, and we can recover from this sort of scenario. But in other
cases, this might be a real problem.

To solve this, in this case, we simply notice that as far as each iterand is concerned, this
is not a problem they are defined in the universe where c0 already appeared, and if we had
any condition in the iteration whose support needed to be “exactly” c0 itself, then we can just
strengthen it to a condition with a full support. So, if we can show that even after the whole
iteration, every countable set in the generic extension is covered by a countable set in the ground
model, then the quotient is dense in the countable support iteration of the iterands. Or, the
full support in this case where the length of the iteration is countable.

Note that this problem presents itself also in the case of products, as they are degenerate
iterations, but since the product arguments are often done in the ground model, this is not as
big a problem as it can get with iterations. Note that in the case κ = ω, that is the case of
finite support iterations, this is always true.

Definition 6.9. We say that an iteration ⟨Q̇α | α < δ⟩ is an iteration of “property φ”, e.g.
c.c.c., if for all α < δ, 1α ⊩α “Q̇α has property φ”.

Theorem 6.10. Finite support iteration of κ-c.c. forcings is itself κ-c.c.

Proof. We can assume that κ is an uncountable and regular, since the first failure of chain
conditions must occur at an uncountable regular cardinal. We prove this by induction on the
length of the iteration, δ. For δ = 0 this is vacuously true. For a successor ordinal δ this is a
consequence of Theorem 6.7. So, we may assume that δ is a limit ordinal. Let A = {pα | α < κ}
be a subset of Pδ.

We divide it into two cases, cf(δ) ̸= κ and cf(δ) = κ. In the first case, there is some γ < δ
such that A∗ = {α < κ | supp(pα) ⊆ γ} has size κ, then A∗ is a subset of Pγ of size κ, and by
the induction hypothesis it contains two compatible conditions, say pα and pβ. It is not hard
to verify that pα and pβ are also compatible in Pδ, so A is not an antichain.

In the second case, fix {δξ | ξ < κ} to be a continuous and cofinal sequence in δ, and let
C ⊆ κ be a club such that when η ∈ C, for all ξ < η, supp(pξ) ⊆ δη.

For any limit point of C, η, there is some ξ(η) < η such that supp(pη) ∩ δη ⊆ δξ(η), so
by Fodor’s lemma there is an unbounded20 subset D ⊆ C, such that ξ(η) = ξ for all η ∈ D.
Considering D∗ = {pα ↾ δξ | α ∈ D} as a subset of Pδξ

. We want to find α < β, both from D
and q ∈ Pξ such that q ≤ξ pα ↾ δξ, pβ ↾ δξ such that we can extend q to q̄ ∈ Pδ which will extend
both pα and pβ.

If D∗ has fewer than κ distinct elements, then there are α < β whose restrictions are equal
and we can take q = pα ↾ δξ. Otherwise this is a subset of size κ, so is not an antichain in Pδξ

,
so there are some α < β, both in D, such that pα ↾ δξ and pβ ↾ δξ are compatible in Pδξ

, so we
can find some q ≤δξ

pα ↾ δξ, pβ ↾ δξ.
19Being a product means that the indexation is more about the set than its order, hence the quotation marks.
20Stationary, in fact!
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Finally, consider the following extension of q into Pδ: q̄ = q⌢pα↾[δξ, δβ)⌢pβ ↾[δβ, δ). Namely,
below δξ we are exactly q; until δα we are exactly what pα did; and for the remainder we are
exactly pβ. Note that the key point here is that if α < β ∈ D, then supp(pα) ∩ supp(pβ) ⊆ δξ.
It is not hard to verify that q̄ ≤δ pα, pβ, so A is not an antichain.

Exercise 6.5. The full support iteration of Add(ω, 1) is not a c.c.c. forcing.

Exercise 6.6. κ-support iteration of κ-closed forcings is itself κ-closed.

Exercise 6.7. If 1n ⊩n “Q̇n has two incompatible conditions”, then the finite support iteration adds
a Cohen real.

Exercise 6.8. Finite support iterations of Q̇n, such that 1n ⊩n “Q̇n does not have the ℵn+1-c.c.”
collapses ℵω.

Exercise 6.9. What goes wrong when trying to iterate with full support ˙Add(ω̇n, ω̇n+2), or any
other value compatible with the continuum function there?
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Chapter 7

Martin’s Axiom

7.1 What is... a Forcing Axiom?

Given a class of forcing notions (e.g., all c.c.c. forcings; all σ-closed forcings; {P} for some partial
order), we want to understand the amount of genericity we can obtain “inside the universe” for
members of the class. Namely, given some collection of dense open sets, is there a filter that
meets all of them?

Clearly, if the collection of dense open sets is just “all of them”, then the answer is no,
except for trivial cases. We can always meet countably many dense open sets, this is just the
Rasiowa–Sikorski lemma,21 or its topological equivalent, the Baire Category Theorem. But
maybe we can meet more?

Suppose that P is σ-closed, if {Dα | α < ω1} are dense open sets, then we can construction
by recursion a descending sequence, pα+1 ≤ pα such that pα ∈ Dα, using the σ-closed to get
through the limit steps. Or, if P was ℵ2-distributive, then the intersection

⋂
α<ω1 Dα is just a

single dense open set, which we can most certainly meet.

Definition 7.1. Let Γ be a class of forcings and let κ be an infinite cardinal. We say that
FAκ(Γ) holds if for every P ∈ Γ and family of dense open subsets of P, D = {Dα | α < κ}, there
is a D-generic filter G. Namely, G ∩Dα ̸= ∅ for all α < κ.

Exercise 7.1. If λ < κ, then FAκ(Γ) =⇒ FAλ(Γ), and FAℵ0(Γ) always holds.

Exercise 7.2. If Add(ω, 1) ∈ Γ, then FA2ℵ0 (Γ) is false. If κ > ω and Col(ω, κ) ∈ Γ, then FAκ(Γ)
is false.

Martin’s Axiom is the particular case where Γ is a subclass of “c.c.c.”, in which case we
denote it by MAκ(Γ), and we omit Γ when it is exactly the class of c.c.c. forcings. We also use
MA to denote MA<2ℵ0 , namely, ∀κ < 2ℵ0 ,MAκ.

7.2 Some consequences of Martin’s Axiom

Proposition 7.2. Assume MAω1 holds, then there are no Suslin trees.

Proof. Let T be a Suslin tree, then as a forcing notion, T is a c.c.c. forcing notion. Let Dα be
the dense open set of all nodes of height α or higher, then a {Dα | α < ω1}-generic filter must
define a cofinal branch.

21Essentially, Theorem 1.8.
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Proposition 7.3. Assume MAκ holds, then 2ℵ0 > κ.

Proof. Suppose that λ ≤ κ, and {rα : ω → 2 | α < λ} is a set of reals, let Dα ⊆ Add(ω, 1) be the
dense open set {p | p ⊈ rα} and let En = {p | n ∈ dom p}. If G is a {Dα, En | α < λ, n < ω}-
generic filter, then G defines a real, g, and by its genericity, g ̸= rα for all α < λ. In particular,
2ℵ0 > λ.

Proposition 7.4. Assume MAκ holds, then given any {rα : ω → ω | α < κ}, there is r such
that rα ≤∗ r for all α < κ.

Proof. Recall the Hechler forcing is c.c.c., and for each α let Dα = {⟨s, F ⟩ | rα ∈ F} and
let En = {⟨s, F ⟩ | n ∈ dom s}, then if G is a {Dα, En | α < κ, n < ω}-generic filter, then⋃

⟨s,F ⟩∈G s = r is a real which dominates all the rαs simultaneously.

Theorem 7.5. Assume MA holds, then 2λ = 2ℵ0 = c for all λ < c. Consequently, c<c = c and
therefore c is a regular cardinal..

Proof. By König’s lemma, cf(2κ) > κ, so if c = 2λ, cf(c) > λ, and if we show 2λ = c for all
λ < c, then we must have that c is regular. Note, moreover, that (2λ)λ = 2λ, so proving this
equality will also imply that c<c = c.

Fix an almost disjoint family of subsets of ω of size c, say {Aα | α < c}. Namely, each Aα is
an infinite subset of ω, and if α ̸= β, then Aα ∩ Aβ is finite.22 We will use this almost disjoint
family of sets to show that given any λ < c and any X ⊆ λ, there is a real, rX , which “codes”
X, in the sense that X = {α < λ | |rX ∩Aα| = ℵ0}.

For X ⊆ λ < c we define PX whose conditions are pairs, ⟨s,A⟩, where s : ω → 2 is a finite
partial function and A ∈ [λ]<ω; with the ordering given by ⟨t, B⟩ ≤ ⟨s,A⟩ when:

1. s ⊆ t and A ⊆ B; and

2. for any n ∈ dom(t \ s), if t(n) = 1 then for some α ∈ A ∩X, n ∈ Aα.

We first notice that PX is c.c.c., since any two conditions p, q such that sp = sq are compatible.
Next, consider for all α < λ the dense open set

Dα,n = {⟨s,A⟩ | α ∈ A,α ∈ X → ∃m(m > n,m ∈ Aα, s(m) = 1)}.

We claim that if G is {Dα,n | α < λ, n < ω}-generic, then rX =
⋃

⟨s,A⟩ s
−1(1) is a code for X.

First we need to check that each Dα,n is a dense open set. Indeed, if ⟨s,A⟩ is any condition,
let m = min{k ∈ Aα | k > n, k /∈ dom s}, then ⟨s∪ {⟨m, 1⟩}, A∪ {α}⟩ is a condition in Dα,n, so
it is a dense set. It is not hard to see that it is also open.

Next, if α /∈ X, then it is clear from the definition of the conditions, that rX ∩Aα is finite.
On the other hand, if α ∈ X, then by meeting all the sets Dα,n we are guaranteed to have an
infinite intersection with Aα.

Theorem 7.6. Assume MAℵ1 holds, if P and Q are c.c.c., then P × Q is c.c.c.

Lemma 7.7. Assume MAℵ1, then every c.c.c. forcing is Knaster. That is, if P is a c.c.c.
forcing, and W is an uncountable subset, then there is an uncountable W ′ ⊆ W such that any
two elements in W ′ are compatible.

22Enumerate the binary tree, and consider the set of branches, for example.
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Proof. We want to show that if P is c.c.c. and W ⊆ P is uncountable, say {pα | α < ω1}, then
there is an uncountable W ′ ⊆ W such that any two points in W ′ are compatible. First we
argue that there is some p ∈ W such that any extension of p is compatible with uncountably
many elements of W , otherwise for all α < ω1 there is some β > α, and qα ≤ pα, such that
qα ⊥ {pγ | γ ≥ β}. In this case we can recursively construct an uncountable antichain from
{qα | α < ω1}.

Say p0 is compatible with uncountably many pα, then Dα = {p ≤ p0 | ∃γ ≥ α, p ≤ pγ} is
dense open below p0, so by MA there is some G which is {Dα | α < ω1}-generic. So G∩W = W ′

must be uncountable, and any two elements there are compatible.

Proof of Theorem 7.6. Suppose that A ⊆ P × Q is uncountable. If there is some p ∈ P such
that {q ∈ Q | ⟨p, q⟩ ∈ W} is uncountable, then we are done, since Q is c.c.c., that means that
there are q, q′ ∈ Q which are compatible and ⟨p, q⟩, ⟨p, q′⟩ ∈ W . Otherwise, for each p ∈ P there
are at most countably many q ∈ Q such that ⟨p, q⟩ ∈ W .

Let W0 be {p ∈ P | ∃q ∈ Q, ⟨p, q⟩ ∈ W}, in that case, as an uncountable set, by Lemma 7.7,
there is W ′

0 ⊆ W0 of pairwise compatible elements. Let W1 = {q ∈ Q | ∃p ∈ W ′
0, ⟨p, q⟩ ∈ W},

then there is some q, q′ ∈ W1 which are compatible and p, p′ ∈ W ′
0 such that ⟨p, q⟩, ⟨p′, q′⟩ ∈ W .

To see this, either W1 is uncountable, and we use the fact that Q is c.c.c., or it is countable, so
we can find q = q′ by cardinality argument.

Remark. The above theorem can be extended to any finite support product of c.c.c. forcings!

7.3 The consistency of Martin’s Axiom

This section will be devoted for the proof of the following theorem.

Theorem 7.8. Assume GCH holds and let κ > ω1 be an uncountable regular cardinal. There is
a c.c.c. forcing P such that 1P ⊩ MA + 2ℵ0 = κ̌.

The idea is going to be simple, we will iterate “enough” c.c.c. forcing notions to guarantee
that MA holds. Since the finite support iterations of c.c.c. forcings is itself a c.c.c. forcing, we
will preserve cofinalities and cardinals. But what does it mean “enough”? After all, we want to
obtain MA for all c.c.c. forcings, of which is there a proper class.

Lemma 7.9. MAλ holds if and only if it holds for c.c.c. forcing notions of size ≤ λ.

Proof. One direction is trivial. In the other direction, suppose that P is a c.c.c. notion and that
{Dα | α < λ} are dense open sets. Refine each to a countable antichain Eα ⊆ Dα, and let Q
be an elementary submodel of P generated by

⋃
α<λEα of size λ. Each Eα generates a dense

open set, D∗
α inside Q, so by our assumption there is G which meets all of the D∗

α. However, in
meeting D∗

α, we must have picked one of the members of Eα, and so our filter generates in P a
filter which is {Dα | α < λ}-generic.

So, if we want to force that MA holds and 2ℵ0 = κ, it is enough to make sure that all c.c.c.
forcings of size < κ will have satisfied MA. We will define a finite support iteration of c.c.c.
forcings using a bookkeeping device. The idea is to iterate, up to κ all the small partial orders,
repeatedly. Then, given a small c.c.c. forcing and a collection of dense open sets, we will argue
that there is a bounded stage in the iteration where the forcing and all the sets have appeared,
so the generic at that stage is indeed meeting all the sets in our collection.
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We begin by fixing a function f : κ → [κ× κ]<κ such that for each a ∈ [κ× κ]<κ, f−1(a) is
unbounded in κ. We construct our finite support iteration by recursion. Suppose that Pα was
defined, if f(α) codes a Pα-name, take a maximal antichain which decides whether or not it is
a c.c.c. forcing, and over this antichain mix either f(α) below the conditions which force to the
positive and the trivial forcing on the others. This is our Q̇α, and plainly, 1α ⊩α “Q̇α is c.c.c.”

For this to make sense, we need to understand in what sense f(α) is coding a name for a
partial order. If we know that Pα can be seen as a subset of κ, and we can think of the next
iterand (or a candidate for one), Q, as a set of ordinals, then its name, Q̇, can be seen as a set
of pairs of ordinals, ⟨ξ, ζ⟩ where ξ is a condition in Pα which forces ζ̌ ∈ Q̇. Since Q̇ is forced to
be small and Pα is c.c.c. we get that Q̇ can be coded as some f(α).
Lemma 7.10. Let µ be a cardinal such that µℵ0 = µ. Suppose that ⟨Q̇α | α < µ⟩ is a finite
support iteration of c.c.c. forcings such that 1α ⊩α |Q̇α| < µ̌, then |Pα| ≤ µ for all α < µ.

Proof. We prove this by recursion on α. For α = 0 this is trivial; if α is a limit ordinal, then
|Pα| = |(

⋃
β<α Pβ)<ω| ≤ µ. Assume that |Pα| ≤ µ, then since 1α ⊩α |Q̇α| < µ̌, since there are

only countably many possible values for |Qα|, these are bounded below µ by some γ. So we can
think of Q̇α as a function from γ into the ordinals. For each ξ < γ there is a maximal antichain
of size ℵ0 which decides its value, Aξ, so the name {⟨p, ξ̌⟩ | p ∈ Aξ, p ⊩α ξ̌ ∈ Q̇α} is forced to be
equal to Q̇α, and as an object in the ground model it has size |γ| · ℵ0.

Finally, the elements of Pα ∗ Q̇α can be thought of as mixing over names which appear inside
Q̇α. Since these are determined by a maximal antichain in Pα and |Q̇α| < µ, we have that

|Pα+1| ≤ (|Pα| · |Q̇α|)ℵ0 ≤ µℵ0 = µ.

So, each Pα in our iteration has size ≤ κ and we can code it as a subset of κ. But we will
do it in the following way. Split κ into {Cα | α < κ} such that |Cα| = κ for all α < κ. Then we
take an injection of cα : Pα →

⋃
β≤αCβ such that whenever β < α, cβ = cα ↾ Pβ.

The reason we do this is to ensure that if a ∈ [κ× κ]<ω is a Pα-name, then it will remain a
Pα-name, even if interpreted as a Pβ-name.
Lemma 7.11. Suppose that Pδ is a finite support iteration of c.c.c. forcings of length δ, and
let G be a V -generic filter. If A ∈ V [G] is a set of ordinals such that |A| < cf(δ), then there is
some α < δ such that A ∈ V [G ↾ α].

Proof. If cf(δ) ≤ ω, this is trivial, since the assumption on A implies it is finite, so we can
assume that cf(δ) > ω. Suppose that p ∈ Pδ and p ⊩ otp(Ȧ) = γ̌, where Ȧ is a name for A.
For every ξ < γ there is a maximal antichain, Aξ, deciding the ξth member of A, since the
iteration is c.c.c. and cf(δ) > ω, there is some αξ such that supp(p) ⊆ αξ for all p ∈ Aξ. Let
α = supξ<γ αξ, then the name Ȧ∗ = {⟨p, β̌⟩ | p ∈ Aξ, p ⊩ β̌ ∈ Ȧ} is a Pα-name, and it is not
hard to see that 1δ ⊩ Ȧ = Ȧ∗.

Finally, suppose that G ⊆ Pκ is a V -generic filter. Since |Pκ| = κ and it is a c.c.c. forcing,
V [G] |= 2ℵ0 ≤ (κℵ0)V = κ. We also added Cohen reals in every limit stage of countable
cofinality, and therefore V [G] |= 2ℵ0 = κ. Suppose that Q ∈ V [G] is a c.c.c. forcing of size < κ,
and suppose that for some γ < κ, D = {Dα | α < γ} is a family of dense open subsets of Q.

By Lemma 7.11 there is some α such that Q and D are in V [G ↾ α]. So, there is some
Pα-name for a c.c.c. forcing which will be interpreted as Q. In particular, in V this name is
some a ∈ [κ × κ]<κ, so it must appear as f(β) for some β ≥ α, since V [G] |= “Q is c.c.c.”, we
are below a condition which forced Q̇β = f(β), so we forced with Q at that stage. This means
that G(β) is a V [G ↾ β]-generic filter for Q, and must meet all the sets in D as wanted.
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Chapter 8

Proper forcing

8.1 Basics

Definition 8.1. Let P be a forcing notion, let θ be a large enough regular cardinal, and let
M ≺ H(θ) be a countable elementary submodel such that P ∈ M . We say that q ∈ P is an
M -generic condition if whenever D ∈ M is predense, D ∩M is predense below q.

Exercise 8.1. Show that we can limit ourselves only to dense open sets/maximal antichains in M .

Exercise 8.2. Show that if q is M -generic and r ≤ q, then r is M -generic.

What is “large enough” in this context, then? Well. Forcing is about the dense and predense
subsets of the forcing notion, so large enough is simply a cardinal which can capture the power
set of P. Namely, θ > |2P|. We will adopt the terminology that M is suitable if it is a countable
elementary submodel of a large enough H(θ) and P ∈ M .

Theorem 8.2. Let P be a forcing notion and M ≺ H(θ) a suitable model. The following are
equivalent for q ∈ P:

1. q is M -generic.

2. If α̇ ∈ M is a name for an ordinal, then q ⊩ α̇ ∈ M̌ .

3. q ⊩ Ġ ∩M is M -generic for P ∩M .

Proof. We will prove that (2) and (3) are equivalent to (1).
Assume (1) holds, and suppose that q is M -generic and let α̇ ∈ M be a name for an ordinal.

Then the set D = {p ∈ P | ∃β, p ⊩ α̇ = β̌} is a dense open set, and by elementarity it lies in
M . It follows, from elementarity, that if p ∈ D ∩ M , then for some β ∈ M , p ⊩ α̇ = β̌. Since
D ∩M is predense below q, it must be that q ⊩ α̇ ∈ M̌ . Given any q̄ ≤ q such that q̄ ∈ D, it is
compatible with a condition in D ∩M and therefore must force that α̇ equals to some β ∈ M .

Assume now that (2) holds. Let D ∈ M be a maximal antichain. Pick, in M , a well-ordering
of D = {pξ | ξ < δ}. Note that pξ ∈ M if and only if ξ ∈ M . Consider the name α̇ obtained
by mixing such that pξ ⊩ α̇ = ξ̌. Since this name is definable from D and the well-ordering, so
by elementarity α̇ ∈ M . Therefore q ⊩ α̇ ∈ M̌ , so D ∩ M must be predense below q, since it
means that any q̄ ≤ q which extends some pξ ∈ D must have that pξ ∈ D ∩M .

Next, assume that (1) holds, and we will show that (3) holds. Suppose that G is a V -generic
filter for P and q ∈ G, then by being M -generic, given any D ∈ M predense, D∩M is predense
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below q. Since q ∈ G, there is some condition p ∈ D ∩M ∩G as well. Therefore G ∩M meets
every predense set D ∈ M . Note that M |= “D is predense” if and only if D ∩ M is predense
in P ∩M by the elementarity of M , so indeed G ∩M is M -generic for P ∩M .

Finally, assume (3), then given any D ∈ M which is predense, as we noted this is equivalent
to D ∩M being predense in P ∩M . Since q ⊩ Ġ ∩ M̌ ∩ Ď ̸= ∅̌, we have that D ∩M must be
predense below q.

Definition 8.3. We say that a forcing notion P is proper if for all large enough regular θ, if
M ≺ H(θ) is suitable, then for any p ∈ P ∩M there is q ≤ p such that q is M -generic.

Exercise 8.3. Show that “for all large enough regular θ” is equivalent to “some regular cardinal
θ ≥ |2P|+” and to “for θ = |2P|+”.

8.2 Proper properties of forcing

In a sense, properness is a generalisation of c.c.c., since what we are saying is that q being M -
generic means that “relevant maximal antichains below q are countable”. But as the following
theorem shows, this is a generalisation in an even stronger sense.

Theorem 8.4. If P is c.c.c., then P is proper. In fact, P is c.c.c. if and only if 1P is M -generic
for any suitable M .

Proof. Let M be a suitable model, taking any maximal antichain D ∈ M . Since P is a c.c.c.
forcing, D is countable, and therefore D ⊆ M .23 And so we get that D ∩ M = D is predense
below 1P.

In the other direction of the equivalence, assume that 1P is M -generic for any suitable M ,
and let D be a maximal antichain, taking a suitable M such that D ∈ M , we get that D ∩M
is predense. However, since D ∩ M ⊆ D is itself an antichain, it has to be that D ∩ M = D,
and therefore D is countable.

Equivalently, of course, we can say that every condition is M -generic for any suitable M .
Being a generalisation of c.c.c., we want to know if it is an actual generalisation, or if this is
just a recasting of c.c.c. in fancy terms.

Theorem 8.5. If P is σ-closed, then P is proper.

Proof. Let P be a σ-closed and let M be suitable. Let {Dn | n < ω} be an enumeration of all
dense open subsets of P. Let p ∈ P ∩M , we define a descending sequence of conditions, p0 ≤ p
such that p0 ∈ D0 ∩ M , and pn+1 ≤ pn is a condition such that pn+1 ∈ Dn+1 ∩ M . Since P is
σ-closed, let q be a lower bound for {pn | n < ω}. We claim that q is M -generic.

Let D ∈ M be a dense open set, then there is some n < ω such that D = Dn, therefore
pn ∈ D ∩ M . Since q ≤ pn we get that {pn} is predense below q, and therefore D ∩ M must
also be predense below q.

Since we know that σ-closed forcing is only c.c.c. if it is trivial, this shows that we have a
lot more than just c.c.c. forcings in the class of all proper forcings. But maybe it is the entire
class of all forcings?

23Since ω + 1 ⊆ M and there is a bijection f : ω → D in M , f(n) ∈ M for all n < ω.
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Theorem 8.6. Let P be a proper forcing, and let S ⊆ ω1 be a stationary set. Then P preserves
the stationarity of S. In particular, ω1 is not collapsed.

We saw that Club(S) is σ-distributive, but if S is stationary and co-stationary, then Club(S)
destroys the stationarity of ω1 \ S and therefore cannot be proper.24 This also shows that
Col(ω, κ) is not proper for any κ > ω.

Proof. Let S be a stationary set and let P be a proper forcing. Suppose that ḟ is a name such
that p ⊩ “ḟ : ω̌1 → ω̌1 is a normal function”,25 we will show that there is q ≤ p such that
q ⊩ ∃δ ∈ Š, ḟ“δ ⊆ δ. Let M be a suitable model such that p, S, ḟ ∈ M and M ∩ ω1 = δ ∈ S.26

Since p ⊩ ḟ : ω̌1 → ω̌1, if α ∈ M is a countable ordinal, then there is a name β̇ ∈ M such that 1
forces β̇ to be a name for an ordinal and p ⊩ ḟ(α̌) = β̇. Let q ≤ p be an M -generic condition,
then q ⊩ β̇ ∈ M̌ , but since q ≤ p, it not hard to verify that q ⊩ β̇ < δ̌. It follows that q forces
that if α < δ, then f(α) < δ, as wanted.
Corollary 8.7. Not every σ-distributive forcing is proper.
Remark. We can define the notions of club and stationary sets in [κ]ω when κ > ω. It turns out
that P is proper if and only if it preserves stationarity in that sense for all κ > ω.
Exercise 8.4. Suppose that P is proper, G ⊆ P is V -generic, and A ∈ V [G] is a countable set of
ordinals. Then there is some B ∈ V such that B is countable and A ⊆ B.
Proposition 8.8. The lottery sum of any number of proper forcings is proper.

Proof. Suppose P =
⊕

i∈I Pi where each Pi is proper, and let M be a suitable model for P.
Given any p ∈ P ∩M , there is some i ∈ I ∩M such that p ∈ Pi ∩M . Since M is also suitable
for Pi, there is some q ≤ p which is M -generic.

8.3 Baumgartner clubs

Theorem 8.9. Let B denote the partial order of finite partial functions p : ω1 → ω1, such that
there is a normal function f : ω1 → ω1 with p ⊆ f . We order B by reverse inclusion, namely
q ≤ p if and only if p ⊆ q. Then B adds a new club to ω1 and B is proper.

Proof. Let F =
⋃
G, where G is a V -generic filter for B. It is not hard to see that F : ω1 → ω1

and that α < β implies F (α) < F (β). To see that F is continuous, let δ be a limit ordinal, and
let supF“δ = γ, then γ ≤ F (δ). Towards a contradiction, assume that γ < F (δ), then there is
some p ∈ G such that p ⊩ ∀α < δ̌, Ḟ (α) ≤ γ̌. However, since p is finite, we can find some large
enough α < δ and set q = p∪ {⟨α+ 1, γ+ 1⟩}. This means that q ⊩ Ḟ (α̌+ 1) > γ̌, which would
be impossible. Therefore F : ω1 → ω1 is continuous. It remains to verify that B is proper.

Suppose that M is a suitable model and p ∈ B ∩ M . Let δ = ω1 ∩ M , then we claim that
q = p ∪ {⟨δ, δ⟩} is M -generic. Suppose that D ∈ M is dense and let r ≤ q be any condition.
Consider r∩M , since for all α ∈ dom r, α < δ if and only if r(α) < δ, r∩M ∈ B∩M . Therefore,
there is some r′ ∈ D such that r′ ≤ r∩M . Easily, r′ is compatible with r, so D∩M is predense
below q.

Exercise 8.5 (*). Let B be the generic club added by B, then B contains no infinite subsets from
V . In other words, if B ∩A ∈ V , then B ∩A is finite.

24There is a generalisation of properness to S-proper when S is a stationary set and Club(S) is indeed S-proper.
25Recall that a function is normal if it is continuous and strictly increasing, or equivalently, if it is the enumer-

ation of a club.
26Recall the proof of Theorem 4.10.
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8.4 General facts about properness

Fact 8.10. If P is proper and 1P ⊩ “Q̇ is proper”, then P ∗ Q̇ is proper. In fact, the countable
support iteration of proper forcings is proper.

Exercise 8.6. If P ∗ Q̇ is proper, then P is proper and 1P ⊩ “Q̇ is proper”. In other words, if P <◦ R
and R is proper, then P is proper and R/P is proper.

As a consequence of the fact above, the countable support iteration of Add(ω, 1) is proper
and therefore does not collapse ω1. This is in stark contrast to Theorem 5.13.

Definition 8.11. The Proper Forcing Axiom, or PFA, is FA<2ℵ0 (Proper) where Proper is the
class of all proper forcings.

Since every c.c.c. forcing is proper, PFA implies MA.

Fact 8.12. PFA proves that 2ℵ0 = ℵ2, and so it is equivalent to FAω1(Proper).

Fact 8.13. We cannot prove PFA is consistent starting from “just” ZFC as we did with MA.
It is known that PFA implies the consistency of fairly strong large cardinal axioms (e.g., it
implies the Axiom of Determinacy holds in an inner model, which already implies the consis-
tency of infinitely many Woodin cardinals). We can prove PFA is consistent by starting from a
supercompact cardinal which is a fairly large large cardinal axiom.

We can weaken the definition of properness in the following way, p is an M -semigeneric
condition if whenever α̇ ∈ M is a name for a countable ordinal, then p ⊩ α̇ ∈ M̌ . With this, P
is semiproper if for every suitable M , every p ∈ P ∩M extends to an M -semigeneric condition.
The above proof shows that semiproper forcing must also preserve stationary sets. Indeed, we
can focus on the even-larger class of forcings which preserve stationary subsets of ω1.

Both of these have their own forcing axioms, SPFA is the semiproper forcing axiom, and
Martin’s Maximum (MM) is the forcing axiom for stationary set preserving forcings. These can
be augmented further, into MM+ and MM++, where we require that the {Dα | α < ω1}-generic
will also interpret a given name for a stationary set correctly, or in the case of MM++, we have
a family of size ℵ1 of names for stationary sets.
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Chapter 9

Coda for Forcing: Prikry forcing

9.1 Measurable cardinals

Definition 9.1. We say that a cardinal κ is measurable if there is a free κ-complete ultrafilter
on κ. Namely, there is an ultrafilter U ⊆ P(κ) which contains all the cofinite sets and given any
{Aα | α < γ} ⊆ U with γ < κ,

⋂
α<γ Aα ∈ U .

We will always assume that our κ is uncountable, although in some instances it is useful
to allow ω to be a measurable cardinal. In any case, if κ is a measurable cardinal, a measure
would always mean a free κ-complete ultrafilter.

Exercise 9.1. If κ is measurable, then κ is regular and a strong limit.

Exercise 9.2 (*). If κ is the least cardinal with a free and ℵ1-complete ultrafilter, then κ is mea-
surable.

Theorem 9.2. κ is measurable if and only if there is an elementary embedding j : V → M ,
where M is a transitive class, and crit(j) = κ. Namely, κ = min{α ∈ Ord | α < j(α)}.

Proof. Suppose that κ is measurable, let U be a measure and consider the ultrapower V κ/U .
Since U is κ-complete, the ultrapower is well-founded. To see this, suppose that fn : κ → V is
a sequence of functions such that [fn+1]U ∈U [fn]U , then An = {α < κ | fn+1(α) ∈ fn(α)} ∈ U
for all n, then by κ-completeness,

⋂
n<ω An ∈ U and so non-empty. Let α be an element of the

intersection, then {fn(α) | n < ω} is ill-founded, which is impossible.
Let M be the transitive collapse of V κ/U ,27 and let j be the ultrapower embedding, namely

j(x) = [cx]U where cx : κ → {x}. We claim that κ = crit(j). For α < κ, if M |= β ∈ j(α),
then there is a function f such that [f ]U = β, then F = {ξ < κ | f(ξ) < α} ∈ U . Consider
for all γ < α the set {ξ < κ | f(ξ) = γ}, then this is a partition of F into |α| parts, so by
κ-completeness, exactly one of them must be in U , so [f ]U = [cβ]U for some β < α. So the
ordinal j(α) must be equal to α itself. On the other hand, for all α < κ, [cα]U < [id]U < [cκ]U ,
where id is the identity function, so κ < j(κ).

In the other direction, if κ is crit(j), let U = {A ⊆ κ | κ ∈ j(A)}. We claim that U is a
measure on κ. Easily, this is a filter. It clearly does not contain any finite subset, since if A ⊆ κ
is finite, then j(A) = A, so it is free. Since for all A ⊆ κ either κ ∈ j(A) or κ /∈ j(A), U is also
an ultrafilter. Finally, if γ < κ and {Aα | α < γ} ⊆ U , then j({Aα | α < γ}) = {j(Aα) | α < γ}
since j(γ) = γ, since κ belongs to each j(Aα), it must be in the intersection.

27We will judicially confuse the elements of M with their ultrapower representations.
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The measure we defined from j is called “the derived measure”.

Exercise 9.3. If κ is a measurable cardinal, show that there exists a measure U on κ such that
{α < κ | α is strongly inaccessible} ∈ U . (Hint: use the measure derived from j in the above proof
and show that κ is strongly inaccessible in M .)

Definition 9.3. We say that a measure U on κ is normal if whenever f : κ → κ is regressive,
namely f(α) < α for all α > 0, there is some A ∈ U such that f is constant on A.

Exercise 9.4. Show that the measure derived from an elementary embedding is always normal.

Exercise 9.5. U is a normal measure on κ if and only if [id]U = κ if and only if it is closed under
diagonal intersections.28

9.2 Prikry forcing

Definition 9.4. Let κ be a measurable cardinal and let U be a normal measure on κ. PU is
the forcing notions whose conditions are ⟨s,A⟩ where s ∈ [κ]<ω is an increasing finite sequence
and A ∈ U such that max rng s < minA. We order PU by ⟨sq, Aq⟩ ≤ ⟨sp, Ap⟩ if and only if sq is
an end-extension of sp, Aq ⊆ Ap and sq \ sp ⊆ Ap.

This forcing is also known as Prikry forcing. It has many generalisations, from tree-type for
measures that are not normal, to larger and more complicated large cardinals which have an
embedding or an ultrafilter associated with them. We will refer to s as “the stem” and to A as
“the upper part”.

Theorem 9.5. Let P = PU for some normal measure on κ, then the following properties hold:

1. 1P ⊩ cf(κ̌) = ω̌.

2. P does not add bounded subsets to κ, so in particular P preserves cardinals up to κ.

3. P has κ+-c.c., so P preserves all cardinals above κ (and so, all cardinals).

Proof. The first property is easy to verify, let c =
⋃

⟨s,A⟩∈G s, where G is a V -generic, then by
genericity, it is easy to see that c is a cofinal sequence of order type ω. The third property is
also easy to show, since clearly if ⟨s,A⟩ and ⟨s,B⟩ are compatible, and there are only κ different
stems.

For the second property we define an auxiliary order, we say that q = ⟨sq, Aq⟩ ≤∗ ⟨sp, Ap⟩ = p
(or that q is a direct extension of p) if sq = sp. It is immediate, from the κ-completeness of U ,
that ≤∗ is a κ-closed order. To prove that no bounded subsets of κ are added we will need the
following lemma: if p is any condition and φ is any statement in the language of forcing, then
there is a direct extension q ≤∗ p such that q decides the truth value of φ.

Let us assume the truth of this lemma first. Suppose that ȧ is a name such that p ⊩ ȧ ⊆ γ̌
for some γ < κ. We can now find a decreasing sequence of direct extensions pα such that pα

decides α̌ ∈ ȧ, for α < γ. Since ≤∗ is κ-closed, there is some q ≤∗ p such that q has decided
all the information about ȧ. Namely, letting u = {α < γ | q ⊩ α̌ ∈ ȧ} we have that q ⊩ ȧ = ǔ.
Therefore no new sets are added below κ and therefore all cardinals are preserved.

The cofinal sequence added by Prikry forcing is called a “Prikry sequence”.
28Recall that △α<κ Aα = {ξ < κ | ∀β < ξ, ξ ∈ Aβ}.
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Lemma 9.6 (The Prikry Lemma). Let P = PU be a Prikry forcing, where U is a normal
measure on κ. Then given any p ∈ P and φ, there is q ≤∗ p such that q decides φ.

Proof. Let p = ⟨s,A⟩ be any condition and φ a formula. Consider the function on [A]<ω:

F (t) =


0, ∃B ⊆ A, ⟨s ∪ t, B⟩ ⊩ φ

1, ∃B ⊆ A, ⟨s ∪ t, B⟩ ⊩ ¬φ
2, Otherwise.

Note that if F (t) < 2, this does not depend on B, since if ⟨t, B⟩ ⊩ φ and C ⊆ A is any other
set, then ⟨t, C⟩ is compatible with ⟨t, B⟩, so no extension of ⟨t, C⟩ can force ¬φ, and therefore
⟨t, C⟩ ⊩ φ (and similarly for the negation of φ).

Let us assume that there is some H ⊆ A such that H ∈ U and for all n < ω, F“[H]n is a
singleton. We claim that q = ⟨s,H⟩ decides the value of φ. Assume otherwise, then there are
t, t′ ⊆ H such that ⟨s∪t, B⟩ and ⟨s∪t′, B′⟩ force opposite values of φ. Without loss of generality
we can assume that |t| = |t′| = n, but in that case F (t) ̸= F (t′) which is impossible since F is
constant on [H]n. Of course, it could very well be that [H]n takes the value of 0 everywhere,
but this is impossible since there will be eventual t ⊆ H such that ⟨s ∪ t, B⟩ decides φ, so it
follows that any extension of that length must have value 0 or 1.

Lemma 9.7. Suppose that U is a normal measure on κ and let F : [κ]<ω → γ be a function
such that γ < κ, then there is some H ∈ U such that for all n < ω, F is constant on [H]n.

Proof. It is enough to show that given any function defined on [κ]n → γ, for any γ, there is
such a homogeneous set. If this is the case, let Hn ∈ U be the homogeneous set for [κ]n, then
H =

⋂
n<ω Hn is our desired set. We prove this by induction on n.

For n = 1 this is just the κ-completeness of U . Assume this is true for [κ]n, and let
F : [κ]n+1 → γ be a function with γ < κ. We define for each α < κ, Fα(t) = F (t∪ {α}), defined
on [κ\{α}]n. By the induction hypothesis, for each α there is someAα ∈ U which is homogeneous
for Fα. We take A = △α<κAα, then by the normality we have that A ∈ U as well. By definition,
if y, x ∈ [A]n+1 and α = min x = min y, then F (y) = Fα(y\{α}) = Fα(x\{α}) = F (x) = ξ < γ.
Since γ < κ, there is H ⊆ A such that F is constant on [H]n+1.

Proposition 9.8. Prikry forcing is semiproper but not proper.

Proof. The Prikry sequence is a countable set of ordinals, and it is easy to see it is not covered
by any countable set in the ground model, since any countable subset of κ is bounded in κ. So
it is not proper. Let us see that it is semiproper.

First note that if α̇ is a name for a countable ordinal and p is a condition, then there is
exactly one β < ω1 for which there is a direct extension q ≤∗ p such that q ⊩ α̇ = β̌, since any
two direct extensions are compatible, and by the Prikry Lemma such q must exist. Moreover,
if p, α̇ ∈ M a suitable model, then by elementarity such q ∈ M as well, and therefore β ∈ M .

Let α̇n, for n < ω, be an enumeration of all the names for countable ordinals in M , and let
p ∈ P∩M be any condition. Then there is a descending sequence of direct extensions, qn ∈ M ,
such that qn decides the value of βn ∈ M∩ω1. Let q ≤∗ qn for all n < ω, then if α̇ ∈ M is a name
for a countable ordinal, there is some n such that α̇ = α̇n, and therefore q ⊩ α̇ = β̌n ∈ M̌ .

Exercise 9.6 (*). Suppose that κ is measurable in V and U is a normal measure and in W ⊇ V
there is a sequence αn such that supn<ω αn = κ. Suppose that for any A ∈ U there is some n0
such that {αn | n > n0} ⊆ A. Then {αn | n < ω} is a Prikry sequence over V for PU .
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Part II

Choiceless Constructions:
Symmetric and Generic Alike
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Chapter 10

The basics of symmetric extensions:
automorphisms and whatnot

10.1 Introduction

The problem with generic extensions, as you may have noticed, at least in the context of
choiceless results, is that generic extensions preserve the Axiom of Choice. This is not a bad
thing when studying models of ZFC, of course, but if one wants to prove that AC is not provable
from ZF, then forcing, on its own, will require us to start with a ground model of ZF + ¬AC,
which defeats the purpose.

However, we can observe that two pairwise generic objects (for the same forcing) will, in a
sense, be indiscernible to the ground model. That is, from the forcing-perspective of the ground
model, it is impossible to tell a priori which object will have which property. For example,
adding two Cohen reals, we cannot decide in advance which one appears first in the linear
ordering of the reals. Of course, there will be some condition that decides this information, but
it is not 1.

Utilising this very observation we can implement, as Cohen did, the ideas that began with
Fraenkel, Mostowski, and later Specker, for constructing models of ZF with atoms where the
Axiom of Choice fails29 and using automorphisms of the forcing notion to find an inner model
of the generic extension where the Axiom of Choice fails.

10.2 Automorphisms

For the rest of the discussion, P is an arbitrary, but fixed, notion of forcing in V .

Definition 10.1. π : P → P is an automorphism if it is an bijection satisfying πq ≤ πp ⇐⇒
p ≤ q.

Exercise 10.1. If π is an automorphism of P, then π(1) = 1.

Exercise 10.2. If π is an automorphism of P and D ⊆ P is predense/dense/dense open (below p),
then π“D = {πq | q ∈ D} is predense/dense/dense open (below πp).

Exercise 10.3. If π is an automorphism of P, then it extends (uniquely) to its Boolean completion.
Indeed, if π is an automorphism defined on a dense subset of P, then π extends (uniquely) to the
Boolean completion of P.

29Also known as permutation models, or FM models, or FMS models.
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Definition 10.2. Let π be an automorphism of P, then π acts on the P-names with the following
recursive definition:

πẋ = {⟨πp, πẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}.

Exercise 10.4. If x ∈ V , then πx̌ = x̌ for any automorphism π.

Exercise 10.5. If π is an automorphism of P, then π preserves the P-rank of P-names.

Lemma 10.3 (The Symmetry Lemma). Suppose that π is an automorphism of P, then for
any P-names ẋ0, . . . , ẋn−1 and formula φ

p ⊩ φ(ẋ0, . . . , ẋn−1) ⇐⇒ πp ⊩ φ(πẋ0, . . . , πẋn−1).

Proof. We prove this by induction on the complexity of φ, and by induction on the ranks of
ẋ0, ẋ1 for ẋ0 ∈ ẋ1 and ẋ0 = ẋ1.

p ⊩ ẋ0 ∈ ẋ1

⇐⇒ {q ∈ P | ∃⟨r, ẏ⟩ ∈ ẋ1, q ≤ r ∧ q ⊩ ẋ0 = ẏ} is dense below p

⇐⇒ {πq ∈ P | ∃⟨r, ẏ⟩ ∈ ẋ1, q ≤ r ∧ q ⊩ ẋ0 = ẏ} is dense below πp

⇐⇒ {πq ∈ P | ∃⟨πr, πẏ⟩ ∈ πẋ1, πq ≤ πr ∧ πq ⊩ πẋ0 = πẏ} is dense below πp

⇐⇒ {q ∈ P | ∃⟨ṙ, ẏ⟩ ∈ πẋ1, q ≤ r ∧ q ⊩ πẋ0 = ẏ} is dense below πp

⇐⇒ πp ⊩ πẋ0 ∈ πẋ1.

The proof for ẋ0 = ẋ1 is similar, as are the proofs for more complicated φ.

Corollary 10.4. For any automorphism π, 1 ⊩ πĠ is a V -generic filter.

Exercise 10.6. (π−1Ġ)G = π“G.

Proposition 10.5. Suppose that ẋ is a P-name, π is an automorphism of P, and G is a V -
generic filter. Then ẋG = (πẋ)π“G.

Proof. We prove this by induction on the P-rank of ẋ.

y ∈ ẋG ⇐⇒ ∃p ∈ G, ẏ : ⟨p, ẏ⟩ ∈ ẋ ∧ ẏG = y

⇐⇒ ∃πp ∈ π“G, πẏ, ⟨πp, πẏ⟩ ∈ πẋ ∧ (πẏ)π“G = y

⇐⇒ y ∈ (πẋ)π“G.

10.3 ...and whatnot

Definition 10.6. Let G be a group. We say that F is a filter of subgroups (on G ) if it is a
non-empty family of subgroups of G which is closed under finite intersections and supergroups.
We say that F is a normal filter if whenever H ∈ F and π ∈ G , πHπ−1 ∈ F .

Definition 10.7. We say that ⟨P,G ,F ⟩ is a symmetric system if P is a notion of forcing, G is
a group of automorphisms of P, and F is a normal filter of subgroups on G .

Having fixed P, let us now fix a symmetric system around it, ⟨P,G ,F ⟩.

Definition 10.8. Let ẋ be a P-name. We say that ẋ is F -symmetric if the stabiliser of ẋ,
symG (ẋ) = {π ∈ G | πẋ = ẋ}, is in F . If this property holds hereditarily for all the names
which appear in ẋ, we say that ẋ is hereditarily F -symmetric. The class HSF is the class of all
hereditarily F -symmetric names.
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Exercise 10.7. Show that symG (πẋ) = π symG (ẋ)π−1, and therefore if F is normal, the property
of being F -symmetric is preserved under the automorphisms from G .

Definition 10.9. Let G be a V -generic filter for P. The class M = HSG
F = {ẋG | ẋ ∈ HSF } is

called a symmetric extension.

Theorem 10.10. Let M be the symmetric extension HSG
F . Then the following properties hold:

1. V ⊆ M ⊆ V [G].

2. M is a transitive class in V [G].

3. M |= ZF.

Proof. To see that V ⊆ M , note that if x ∈ V , then x̌ ∈ HSF . The hereditary nature of HSF

ensures that M is a transitive class in V [G]. So it remains to see that M is a model of ZF.
We will use the following fact: If M is a transitive class that is almost universal and satisfies
∆0-Separation, then M is an inner model of ZF.

First we check that M is almost universal. Let x ∈ V [G] be such that x ⊆ M . We need
to find y ∈ M such that x ⊆ y. Let ẋ be a name for x, and without loss of generality, we can
assume that any name which appears in ẋ is in HSF . Let α be the P-name rank of ẋ, and let
ẏ = {u̇ ∈ HSF | rank(u̇) < α}•. It is not hard to see that 1 ⊩ ẋ ⊆ ẏ, as any name appearing in
ẋ has rank smaller than α and is in HSF . Since F is normal, πẏ = ẏ for all π ∈ G , so ẏ ∈ HSF

as well. Therefore, M is almost universal.
We prove that M satisfies ∆0-Separation. Namely, if x,w ∈ M and φ(u) is a ∆0 formula,

then the subset it defines, y = {u ∈ x | φ(u,w)}, is in M .30 Let ẋ, ẇ ∈ HSF be names for x
and w. We define ẏ = {⟨p, u̇⟩ | rank(u̇) < rank(ẋ), u̇ ∈ HSF , p ⊩ u̇ ∈ ẋ ∧ φ(u̇, ẇ)}.

We claim, to begin with, that ẏG = y. If u ∈ y, then there are some p, q ∈ G and a name
u̇ for u, such that ⟨p, u̇⟩ ∈ ẋ, q ≤ p, and q ⊩ φ(u̇, ẇ). Therefore ⟨q, u̇⟩ ∈ ẏ, so u ∈ ẏG. In the
other direction, if u ∈ ẏG, then there is some p ∈ G and a name u̇ for u such that ⟨p, u̇⟩ ∈ ẏ,
and therefore p ⊩ u̇ ∈ ẋ ∧ φ(u̇, ẇ), so indeed u ∈ y and therefore ẏ is indeed a name for y.

It remains to show that ẏ ∈ HSF . Let π ∈ symG (ẋ) ∩ symG (ẇ). Then by the Symmetry
Lemma we have

p ⊩ u̇ ∈ ẋ ∧ φ(u̇, ẇ) ⇐⇒ πp ⊩ πu̇ ∈ πẋ ∧ φ(πu̇, πẇ).

However, since πẋ = ẋ and πẇ = ẇ, as well as π preserving being in HSF and ranks, we get
that πẏ = ẏ, so symG (ẋ) ∩ symG (ẇ) ⊆ symG (ẏ). Moreover, as every name in ẏ is by definition
in HSF it means that ẏ ∈ HSF as wanted.

Definition 10.11. We have a relativised forcing relation, ⊩HS, defined by requiring that all
names and quantifiers are restricted to HS.

Exercise 10.8. If π ∈ G and ẋ ∈ HSF , then p ⊩HS φ(ẋ) ⇐⇒ πp ⊩HS φ(πẋ). That is, the
Symmetry Lemma holds for ⊩HS if we restrict to the group G .

Theorem 10.12. The following are equivalent:

1. p ⊩HS φ.

2. For any V -generic, G, such that p ∈ G, HSG
F |= φ.

30Since M is transitive, it agrees with V on ∆0-definitions where the parameters are in M . If we wanted to
verify Separation in its generality, this would require more finesse.
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10.4 Cohen’s first model

We finish with one of the most important examples. Cohen’s [first] model was the first model
of ZF + ¬AC. It was constructed from V = L, but we can use any model of ZFC as a ground
model. We will omit the subscripts from symG and HSF to improve the readability.

Let P = Add(ω, ω). Our group G is the group of finitary permutations of ω, with the
action on P defined by πp(πn,m) = p(n,m). The filter F is generated by sets of the form
fix(E) = {π ∈ G | π ↾ E = id} where E ∈ [ω]<ω.
Exercise 10.9. Show that F is normal.

We say that E is a support for a name ẋ if fix(E) ⊆ sym(ẋ). Similarly, E is a support for a
condition p if dom p ⊆ E ×ω. Note that if E is a support for p, then for all π ∈ fix(E), πp = p.
We will write supp(p) to denote the smallest E which is a support for p.

We define ȧn = {⟨p, m̌⟩ | p(n,m) = 1} and Ȧ = {ȧn | n < ω}•.
Proposition 10.13. πȧn = ȧπn and consequently, πȦ = Ȧ.
Corollary 10.14. ȧn, Ȧ ∈ HS.

Proof. {n} is a support for ȧn, and ∅ is a support for Ȧ.

Proposition 10.15. If n ̸= m, then 1 ⊩HS ȧn ̸= ȧm. Therefore 1 ⊩HS “Ȧ is infinite”.
Theorem 10.16. 1 ⊩HS Ȧ cannot be well-ordered.

Proof. Suppose that ḟ ∈ HS and p ⊩HS ḟ : ω̌ → Ȧ. We will show that p ⊩ “ḟ is not injective”.
Let E be a support for ḟ and p. Let q ≤ p be a condition such that for some n /∈ E and i < ω,
q ⊩HS ḟ (̌i) = ȧn. If no such q exists, the p ⊩ rng(ḟ) ⊆ {ȧn | n ∈ E}•, which is a finite set, and
therefore p already forces that ḟ is not injective.

Next, pick m /∈ E∪{n}∪supp(q), and consider π to be the 2-cycle (n m). Easily, π ∈ fix(E)
and therefore πḟ = ḟ and πp = p. By the proposition above, πȧn = ȧm. So we have that
πq ⊩HS ḟ (̌i) = ȧm.

Next, we claim that πq is compatible with q. To see that, note that if ⟨i, j⟩ ∈ dom q ∪ πq,
then either i ∈ {n,m} in which case ⟨i, j⟩ is in exactly one of the conditions, or else πi = i and
so q(i, j) = πq(πi, j) = πq(i, j).

Therefore, q ∪ πq ⊩HS ḟ (̌i) = ȧn ̸= ȧm = ḟ (̌i). This is of course impossible. Therefore, there
cannot be such q, as wanted.

What we actually see here is that Ȧ is going to be an infinite set without a countably
infinite subset. In other words, an infinite Dedekind-finite set. This implies that not only that
AC fails, in fact ACω already fails. We will get back to the Cohen model later, as well as see its
generalisations and extensions.
Proposition 10.17. In the Cohen model, 1 ⊩HS ∃a ∈ Ȧ, 0̌ ∈ a, but there is no ȧ ∈ HS such
that 1 ⊩ 0̌ ∈ ȧ ∈ Ȧ. Therefore ⊩HS does not have an analogue of the Mixing Lemma.

Proof. It is easy to check that 1 ⊩HS ∃a ∈ Ȧ, 0̌ ∈ a. Suppose that ȧ ∈ HS was a name witnessing
this and let E be its support. Let p be any condition extending {⟨⟨n, 0⟩, 0⟩ | n ∈ E} which
decides for some k that ȧ = ȧk. Note that p ⊩HS ȧ ̸= ȧn for all n ∈ E, so k /∈ E. Find some
m /∈ E ∪ supp(p) ∪ {k} and take π to be the 2-cycle (m k). Then, as before, πp is compatible
with p, πȧ = ȧ, since π ∈ fix(E), and πp ⊩ ȧ = ȧm ̸= ȧk. This is, of course, a contradiction,
since then p ∪ πp ⊩HS ȧm = ȧ = ȧk.

50



10.5 Tenacity

One thing that was helpful in clarifying the argument in the Cohen model was the fact that
given a condition p, we could find a group in the filter which does not move p. Namely,
fix(p) = {π ∈ G | πp = p} was a large group.

Definition 10.18. Given a symmetric system ⟨P,G ,F ⟩ we say that p ∈ P is F -tenacious
if fix(p) ∈ F . We say that the system itself is tenacious if there is a dense set of tenacious
conditions.

We saw that the symmetric system for the Cohen model is tenacious, indeed all the con-
ditions were tenacious. On the other hand, if we had taken F = {G } instead, then the only
condition that is tenacious would be 1. Incidentally, in this case the only names in HS would
have the form x̌.

Definition 10.19. We say that two symmetric systems, ⟨P,G ,F ⟩ and ⟨P′,G ′,F ′⟩, are equiva-
lent if for every V -generic filter G ⊆ P there is a filter G′ ⊆ P′ such that HSG

F = HSG′
F ′ and vice

versa.

Note that we do not require that G′ is V -generic, just that the interpretation of HSF ′ is
“correct enough”.

Theorem 10.20. Every symmetric system is equivalent to one where all conditions are tena-
cious.

Definition 10.21. Let ⟨P,G ,F ⟩ be a symmetric system. We say that A ⊆ P is symmetric
if {π ∈ G | π“A = A} ∈ F . We say that G ⊆ P is a symmetrically V -generic if for every
symmetrically dense open set D ∈ V , D ∩G ̸= ∅.

Theorem 10.22. The following are equivalent:

1. p ⊩HS φ.

2. For every V -generic, G, such that p ∈ G, HSG |= φ.

3. For every symmetrically V -generic, G, such that p ∈ G, HSG |= φ.

Proof. We already know that (1) and (2) are equivalent. We also know that every generic filter is
symmetrically generic, so (3) implies (2) trivially. It remains to prove that (1) implies (3). The
complete proof is done by induction on the formula and the rank of the names, but let us only
consider the crux of the point induction here. For this, let us be explicit and write φ(ẋ). Note
that {p ∈ P | p ⊩HS φ(ẋ) ∨ p ⊩HS ¬φ(ẋ)} is a dense open set, but it is also symmetric. Indeed,
if π ∈ sym(ẋ), then p ⊩HS φ(ẋ) if and only if πp ⊩HS φ(ẋ), and likewise for the negation.

There is a non-trivial part that we have neglected to deal with. Why is HSG even a model of
ZF if G is not V -generic, but only symmetrically V -generic? Well, we do know that 1 ⊩HS ZF.
We can recast the ⊩HS relation into explicit terms by using symmetrically dense open sets, and
we will see, in doing so, that whereas the truth in a generic extension depends on the dense
sets, the truth in a symmetric extension depends only on the symmetrically dense sets.

Before we can finally prove the theorem, we will make one more observation.

Proposition 10.23. Suppose that P is a complete Boolean algebra, then sup{p ∈ P | p ⊩HS φ}
is the weakest condition which symmetrically forces φ, and it is tenacious.
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The proof here is essentially the same idea as the previous proof. Armed with this knowledge,
we can now prove Theorem 10.20.

Proof of Theorem 10.20. We may assume without loss of generality that P is a complete Boolean
algebra. Let B be the subset of P which contains all the tenacious conditions. We claim that
⟨B,G ,F ⟩ is equivalent to ⟨P,G ,F ⟩, in the sense that every symmetrically V -generic filter on
the one, is symmetrically V -generic filter on the other.

First, we must argue that G still acts on B. But, indeed, if p ∈ P is tenacious and π ∈ G ,
then fix(πp) = π fix(p)π−1 ∈ F . So B itself is closed under the action of G , and so ⟨B,G ,F ⟩
is a symmetric system. As we are using the same filter of groups, we will denote HSP and HSB
the two classes of hereditarily F -symmetric names.

Next, since HSB ⊆ HSP, we will show that if ẋ ∈ HSP, then there is some ẋ′ ∈ HSB such that
1P ⊩P ẋ = ẋ′. We prove this by induction on the name rank. Suppose that ẋ ∈ HSP, by the
induction hypothesis we may assume that if ⟨p, ẏ⟩ ∈ ẋ, then ẏ ∈ HSB.

For each ⟨p, ẏ⟩ ∈ ẋ, let p̄y = sup{πp | π ∈ sym(ẋ) ∩ sym(ẏ)}. This is a well-defined
condition, as P is a complete Boolean algebra. Note that p̄y is tenacious and p̄y ⊩ ẏ ∈ ẋ. We
define ẋ′ = {⟨p̄y, ẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}, then ẋ′ is the wanted name.

Finally, if G ⊆ P is a V -generic filter, then it is clear that HSG
P = HSG

B . It remains to argue
in the other direction. Suppose that G ⊆ B is a V -generic filter, and let G′ be the filter on P
generated by G. We claim that HSG

B = HSG′
P . Indeed, if ẋ ∈ HSP and p ⊩HS

P ẏ ∈ ẋ, we know that
we may assume that ẏ ∈ HSB and that p ∈ B, which is enough to argue that the interpretation
of the names is the same.
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Chapter 11

Homogeneity is not just for milk

11.1 Moving around

Definition 11.1. We say that a forcing P is weakly homogeneous if for every p, q ∈ P there is
an automorphism π such that πp is compatible with q.

Proposition 11.2. If P is weakly homogeneous, then its Boolean completion is weakly homo-
geneous.

Proof. Let B denote the Boolean completion of P. Let p, q ∈ B, then there are p̄, q̄ ∈ P such
that p̄ ≤ p and q̄ ≤ q. By weak homogeneity, there is some π such that πp̄ is compatible with
q̄, say by some r ≤ πp̄, q̄. However, since p̄ ≤ p, it follows that πp̄ ≤ πp. Therefore r ≤ πp and
on the other hand, r ≤ q̄ ≤ q, so πp and q are compatible.

The other direction is not true, though, as we can see in the following proposition.

Proposition 11.3. Add(ω, 1) is weakly homogeneous, but it is forcing equivalent to a rigid
partial order (that is without non-trivial automorphisms).

Proof. Given p, q ∈ Add(ω, 1), that is two finite partial functions ω → 2, consider a permutation
of ω, π, which moves dom p to be disjoint from dom q acting on Add(ω, 1) by πp(πn) = p(n).
Then dom(πp) ∩ dom q = ∅, so the two conditions are compatible.

To produce a rigid partial order, we construct a finitely splitting tree by recursion. Start with
a root t2 that splits into two nodes, t3, t4. Then by recursion, ti splits into i successors which are
indexed by next available integers. It is not hard to see that this tree has no maximal elements,
and therefore is forcing equivalent to Add(ω, 1). However, every node in the tree is determined
by the number of its successors, which, being finite, must be preserved by automorphisms, and
therefore the only automorphism is the identity.

We will say that P is a rigid forcing if its Boolean completion is rigid. So the tree we
constructed, despite being a rigid partial order, is not a rigid forcing.

Proposition 11.4. Suppose that P is a weakly homogeneous forcing, then for every φ(x) in the
language of forcing and every x ∈ V , 1 ⊩ φ(x̌) or 1 ⊩ ¬φ(x̌).

Proof. Suppose that p ⊩ φ(x̌). Then for any q there is some π such that πp is compatible with
q. In particular, it means that q ̸ ⊩ ¬φ(x̌). Therefore, there is no condition which forces ¬φ(x̌),
and so 1 ⊩ φ(x̌).
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Fact 11.5. Let P be a complete Boolean algebra, p, q ∈ P. There is an automorphism π such
that πp is compatible with q if and only if there is a V -generic G ⊆ P such that p ∈ G and
H ∈ V [G] which is V -generic, q ∈ H, and V [G] = V [H].

Corollary 11.6. P has a rigid Boolean completion if and only if it admits a unique generic
which generates the extension.

Exercise 11.1. Let P be a forcing notion, then the following are equivalent:

1. The Boolean completion of P is weakly homogeneous.

2. If G is V -generic, then for every p ∈ P there is some V -generic, Gp, such that p ∈ Gp and
V [G] = V [Gp].

3. For every φ(ẋ1, . . . , ẋn) in the language of forcing and x1, . . . , xn ∈ V , 1 decides the truth
value of φ(x̌1, . . . , x̌n).

Definition 11.7. We say that P is cone homogeneous if for every p, q ∈ P there are extensions
p̄ ≤ p and q̄ ≤ q such that P ↾ p̄ ∼= P ↾ q̄

Exercise 11.2. Use the fact to prove that cone homogeneous complete Boolean algebras are weakly
homogeneous.

Definition 11.8. We say that G witnesses the homogeneity of P if whenever p, q ∈ P there is
some π ∈ G such that πp is compatible with q. We say that a symmetric system ⟨P,G ,F ⟩ is
homogeneous if G witnesses the homogeneity of P.

Theorem 11.9. If Q is any forcing notion, then there is a homogeneous system ⟨P,G ,F ⟩ such
that Q <◦ P and there is a name Ḣ ∈ HS such that 1P ⊩ “Ḣ is a V -generic filter for Q̌”.

Proof. Let P be the finite support product
∏

n<ω Q, with G the group of finitary permutations
of ω acting on the product in the natural way: π⟨qn | n < ω⟩ = ⟨qπn | n < ω⟩, and F generated
by fix(E) for E ∈ [ω]<ω. It is not hard to verify this is symmetric system works.

Assuming ZFC, however, every forcing also embeds into a rigid forcing. Let us see how this
works for the case of Add(ω, 1).

Theorem 11.10. There is a rigid forcing P such that Add(ω, 1) embeds into P.

Proof. For simplicity, we will assume GCH holds in the ground model, although this is not
strictly necessary. We define an iteration of length ω with full support.

Q0 = Add(ω, 1), and let G0 be a V -generic filter, with c0 =
⋃
G0 as the “generic set”.

Suppose that V [Gn] was defined, with Gn generic for Pn, the iteration of the first n steps, and
cn is the generic set, we let Qn be the full support product of

∏
α∈cn

Add+(ωα+1, 1).
Here Add+(κ+, 1) simply means that the domains of the conditions are restricted to [κ, κ+).
If Hn ⊆ Qn is V [Gn]-generic, then cn+1 =

⋃
Hn is the generic set, in that it determines Hn

uniquely. We now set Gn+1 = Gn ∗Hn, and proceed.
Let P be the iteration of length ω. We argue that P is a rigid forcing, so it is enough to

show that if G is V -generic, then G is unique. But indeed, H was V -generic and V [G] = V [H],
then by induction, we get that ċG

n = ċH
n , since it is the set

{α < sup cn | ωα+1 has a generic subset over the previous model},

but since those sets determine the generics of every step it follows that Gn = Hn for all n < ω,
so G = H.
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11.2 The Feferman–Levy model

Theorem 11.11. It is consistent with ZF that 2ω is a countable union of countable sets.

Before proving the theorem, let us see a consequence of this fact.

Proposition 11.12. Suppose that 2ω is a countable union of countable sets, then ω1 is singular.

Proof. Recall that there is a map from 2ω onto ω1. Given x ∈ 2ω, decode from x a relation on
ω. If this relation is a well-ordering of its domain, map it to its order type. Otherwise map it
to 0. Call this surjection O : 2ω → ω1.

Suppose that 2ω =
⋃

{An | n < ω}, where each An is countable. Since the image of a
countable set is always finite or countable itself, O“An = Bn is countable. Since O is onto,
ω1 =

⋃
{Bn | n < ω}, so it is the countable union of countable sets. If there is some Bn

which is unbounded, we can recursively construct a cofinal sequence of length ω. Otherwise,
set αn = supBn, then sup{αn | n < ω} = ω1, and so again we can recursively find a cofinal
sequence of length ω.

Exercise 11.3. ω2 is never the countable union of countable sets.

Proof of Theorem 11.11. For simplicity, assume V = L, or at least GCH. Our forcing P is going
to be the finite support product of Col(ω, ωn). Namely, p ∈ P is a finite function whose domain
is a subset of ω × ω with the property that p(n, ·) : ω → ωn is a finite partial function. We will
write supp(p) to denote {n < ω | ∃m, ⟨n,m⟩ ∈ dom p}. If E ⊆ ω, we will write p ↾ E to denote
p ↾E×ω, and we will write P ↾E to denote {p ↾E | p ∈ P}. Note that for n < ω, P ↾n is simply
the finite product of collapses.

Our group of automorphisms, G , will be permutations of ω × ω which do not move the left
coordinate. Namely, π(n,m) = ⟨n,m′⟩ for some m′.

For E ⊆ ω, define fix(E) = {π ∈ G | π ↾ E × ω = id}. We let F to be the filter generated
by {fix(E) | E ∈ [ω]<ω}. We will say that E is a support for a name ẋ if fix(E) ⊆ sym(ẋ), as
we did before.

Claim. ⟨P,G ,F ⟩ is a homogeneous system.

Proof of Claim. It is not hard to verify that F is normal, since π fix(E)π−1 = fix(E). To verify
the homogeneity, suppose that p, q ∈ P, then for every n ∈ supp(p) there is some πn : ω → ω
which makes the domain of p(n, ·) disjoint from the domain of q(n, ·), for n /∈ supp(p) set
πn = id. Let π(n,m) = ⟨n, πnm⟩, then πp and q have disjoint domains and are therefore
compatible.

Claim. If ẋ ∈ HS and 1 ⊩HS ẋ ⊆ η̌, for some ordinal η, then if p ⊩ ξ̌ ∈ ẋ, then p ↾ E ⊩ ξ̌ ∈ ẋ,
where E is a support for ẋ.

Proof of Claim. If q ≤ p↾E, then there is an automorphism, π, which makes p↾(supp(p)\E) and
q compatible. Moreover, this π can be taken such that π ∈ fix(E), as constructed in the proof
of the previous claim. Therefore πp is compatible with q, so q cannot force α̌ /∈ ẋ. Therefore
p ↾ E ⊩ α̌ ∈ ẋ.

Indeed, we have actually proved the more general lemma.

Lemma 11.13. Suppose that ẋ ∈ HS with a support for E and p ⊩HS φ(ẋ, ǎ1, . . . , ǎn) for some
a1, . . . , an ∈ V . Then p ↾ E ⊩ φ(ẋ, ǎ1, . . . , ǎn).
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It follows that if ẋ ∈ HS is a name for a real, then there is some n < ω and some P ↾n-name,
ẋ∗ such that 1 ⊩ ẋ = ẋ∗. Note that any P ↾ n-name is always in HS.

Let Ṙn = {ẋ ∈ HS | ẋ is a nice P ↾ n-name for a real}•, then Ṙn ∈ HS for all n < ω,
and indeed, ⟨Ṙn | n < ω⟩• ∈ HS. Here a “nice name for a real” can be interpreted simply as
requiring any name appearing inside ẋ to be 0̌ or 1̌ or any other property that is preserved
under all automorphisms.

Claim. For all n < ω, 1 ⊩HS |Ṙn| = ℵ0.

Proof of Claim. Note that Ṙn is the name for 2ω of the model V [G ↾n], where G is a V -generic
filter for P. Since we assume GCH, 1n ⊩ |Ṙn| = ℵ1 = |ω̌n+1|. However, since the nth factor of
the iteration is Col(ω, ωn+1), 1n+1 ⊩ |Ṙn| = ℵ0. Since P ↾ n + 1-names are all in HS, it is the
case that 1 ⊩HS |Ṙn| = ℵ0.

Finally, by the second claim, every name for a real number in HS is equivalent to a name in
some Ṙn. Therefore 1 ⊩HS ⋃

{Ṙn | n < ω} = 2ω. So, indeed, 1 ⊩HS “2ω is a countable union of
countable sets” as wanted.

Exercise 11.4 (*). Working in the Feferman–Levy model, let E ⊆ ω be in the ground model and
let RE =

⋃
{Rn+1 \Rn | n ∈ E}. Show that |RE | ≤ |RE′ | if and only if E \ E′ is finite.

Exercise 11.5 (*). Show that in the previous exercise we can remove the requirement that E was
in the ground model.

As a consequence of this exercise, we can show that CH fails in fairly substantial ways in
the Feferman–Levy model, in that there are many intermediate cardinals between ω and 2ω.

Exercise 11.6. Show that it is consistent with ZF that cf(ω2) = ω or that cf(ω2) = ω1.

Remark. One might be tempted to try and construct a model of ZF in which cf(ω1) = cf(ω2) = ω.
This, however, requires very large cardinals to be present. Interestingly, we do not know the exact
consistency strength of this assumption.
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Chapter 12

Pseudo-atoms make pseudo-matter

12.1 Generically indiscernible sets

The problem with Cohen reals, or any reals, for that matter is that their generic theory relative
to the ground model, so to speak, will determine them completely. In other words, we can split
any set of reals into those that contain 0 or not; those that have one pattern or another.

Looking at the Cohen model, we can think of this as having tried to create a “copy” of a
structure. In this case, it is ω, and the structure is preserved under any finitary permutation of
ω, and the subsets of the structure that we tried to preserve are those that are preserved when
fixing finitely many coordinates.

Naively, at least, it seems that we tried to preserve the trivial structure. Indeed, if R is any
n-ary relation on ω that is stable under all finitary permutations which fix a finite set, then R
is either finite or co-finite. But as we said above, we can still split the Dedekind-finite set of
Cohen reals, A into {a ∈ A | 0 ∈ A} and its complement, and it is not hard to see that both
have to be infinite. What if we wanted to have a better control?

Definition 12.1. Suppose that X,Y are two sets, G is a group of permutations of X and H
is a group of permutations of Y . The wreath product, G ≀H is the groups of permutations, π, of
X × Y which have the following properties:

1. There is a sequence ⟨πx ∈ H | x ∈ X⟩ and a permutation π∗ ∈ G .

2. π(x, y) = ⟨π∗(x), πx(y)⟩.

In other words, we assign each Y -section a permutation, and after applying each one of these,
we permute the X coordinates. We will refer to the πx as an inner part of π and π∗ is called
the outer part of π.

Remark. The exact definition in terms of notation may slightly differ from the standard one in group
theory. However, it is the one that is most clear and useful for us in this context.

In order to find two “generically indiscernible” sets, it seems that sets of reals, or indeed any
sets of ordinals, are not going to do the trick. They can canonically be linearly ordered, and if
classification theory had taught us anything is that when an order is definable, all hell breaks
loose.
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12.2 Example: amorphous sets

Definition 12.2. We say that an infinite set is amorphous if it cannot be written as a disjoint
union of two infinite sets.
Proposition 12.3. If A is an amorphous set, then A cannot be mapped onto ω.
Proposition 12.4. If A is an amorphous set, then A cannot be linearly ordered.

Proof. Suppose that < is a linear ordering on an amorphous set. Consider the set A0 given by
{a ∈ A | {b ∈ A | b < a} is finite}, it is either finite or co-finite. Supposing it is co-finite, the
size of these finite initial segments is uniquely determined, since < is a linear ordering, which is
a function from A onto ω. So it must be a finite set, in which case taking the reversed ordered
(or considering tail segments) gives the same map onto ω.

Theorem 12.5. It is consistent with ZF that there is an amorphous set.

Proof. Let P be Add(ω, ω × ω), and let G be the group S<ω ≀ S<ω acting in the usual way on
conditions, we will write π∗ to denote the outer part of π and π∗

n to denote the nth inner part.
Namely, πp(π(n,m), k) = p(n,m, k). Finally, the filter F is generated by fixing finite subsets
of ω × ω pointwise, that is, fix(E) = {π ∈ G | π ↾ E = id} for E ∈ [ω × ω]<ω.31

For n,m < ω we let ẋn,m = {⟨p, ǩ⟩ | p(n,m, k) = 1}. We then let ȧn = {ẋn,m | m < ω}• and
Ȧ = {ȧn | n < ω}•.

Claim. The following hold:

1. ⟨P,G ,F ⟩ is a homogeneous system.

2. πẋn,m = ẋπ(n,m).

3. πȧn = ȧπ∗n.

4. πȦ = Ȧ.
Claim. Given any p, q ∈ P, there is π ∈ G such that π∗ = id and πp is compatible with q.

Proof of Claim. For all n, if there is some m for which ⟨n,m⟩ ∈ supp(p), find πn such that
πn“{m | ⟨n,m⟩ ∈ supp(p)} ∩ {m | ⟨n,m⟩ ∈ supp(q)} = ∅. Otherwise, set πn = id. Then π
for which π∗ = id and πn defined as above satisfies that dom(πp) ∩ dom(q) = ∅ and the two
conditions are therefore compatible.

Suppose, first, that B ⊆ ω such that {ȧn | n ∈ B}• ∈ HS, then B is finite or co-finite.
Indeed, if B is finite this is trivial. Suppose that B is infinite and let E be a finite set such that
fix(E) ⊆ sym({ȧn | n ∈ B}•). If B is co-infinite, let n ∈ B and m /∈ B such that {n,m}∩E = ∅.
We can now take any π ∈ fix(E) such that π∗ = (n m), which shows that πḂ ̸= Ḃ. This is
impossible, so if B is infinite, it must be that ω \B ⊆ E.
Remark. So far, this argument is not too dissimilar from the structure of the Cohen model. Yet, the
set we defined in the Cohen model is a set of real numbers, and is most certainly linearly ordered.
Indeed, it is quite easy to see that in Cohen’s model, mapping each real to its minimal element (as
a subset of ω) will give us a surjection onto ω. What the above argument shows, however, is that
even in the Cohen model, any infinite-co-infinite subset of A, when considered in the full generic
extension, is coded by a new real, rather than a ground model set.

31It is worth noting that there are a lot of ways to combine filters that will give us the wanted result here. We
simply pick the simplest one at this point.
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To actually show that 1 ⊩HS “Ȧ is amorphous” suppose that Ḃ ∈ HS with some finite
support E, and p ⊩HS Ḃ ⊆ Ȧ. It is enough to verify that if p ⊩ “Ḃ is infinite”, then p must
force that Ḃ is co-finite. For simplicity, we may assume that E = N2 for some N < ω and that
supp(p) = N2 as well.

Suppose that n > N and q ≤ p are such that q ⊩HS ȧn ∈ Ḃ. For any m > N , there is some
π ∈ fix(E) such that π∗ = (n m) and πq is compatible with q. Therefore, q cannot force that
ȧm /∈ Ḃ. But since this applies to any extension of q as well, it follows that q must therefore
force that ȧm ∈ Ḃ as well. Therefore, if q ≤ p and q ⊩ ȧn ∈ Ḃ for some n > N , then q forces
that {ȧn | n > N}• ⊆ Ḃ. But since p forced that Ḃ is infinite, it must be that any p′ ≤ p can
be extended to such q, and therefore p already must force that inclusion holds and that Ḃ is
co-finite.

Exercise 12.1. Show that if Ṗ ∈ HS is a name for a partition of Ȧ, then 1 ⊩HS “Ṗ has only finitely
many non-singleton elements”.32

The key point in the proof, in contrast to the construction of the Cohen model, is that we
can move the ȧn almost independently of the conditions that force their properties. This is
because any two infinite sets of Cohen reals over the same ground models will have “the same
generic properties”. Anything that can be forced, in terms of the properties of the Cohen reals,
must be witness (not just forced) by a condition, which is finite, and so must happen repeatedly
in both infinite sets.

Exercise 12.2. What happens if we replace the filter F by the “one-dimensional analogue”? Namely,
for E ⊆ ω, let fix(E) = {π ∈ G | π ↾ E × ω = id}.

Theorem 12.6. It is consistent with ZF that there is a vector space over F2 which is not finitely
generated but every proper subspace is finitely generated. In particular, there can be a vector
space without a basis.

Proof. Let W denote the countably generated vector space over F2, and let P = Add(ω,W ×ω).
We let G = Aut(W ) ≀ S<ω, and F be the filter generated by fix(E) = {π ∈ G | π ↾ E = id} for
E ∈ [W × ω]<ω.

As before, we denote by ẋw,n = {⟨p, m̌⟩ | p(w, n,m) = 1}, ȧw = {ẋw,n | n < ω}•, and
Ȧ = {ȧw | w ∈ W}•. Much like in the previous case, etc.

Claim. Let +̇ = {⟨ȧw, ȧv, ȧw+v⟩• | w, v ∈ W}•, then +̇ ∈ HS and 1 ⊩HS “⟨Ȧ, +̇⟩• is a vector
space over F2”.

Suppose that Ẋ ∈ HS and p ⊩HS “Ẋ is a subspace of Ȧ”. Let E be a support for Ẋ, since
W is infinite dimensional, there is some w /∈ span(E∗), where E∗ is the projection of E to W .
Moreover, for any v /∈ span(E∗ ∪ {w}), and an automorphism, π∗, of W such that π∗ ↾E∗ = id
and π∗w = v. If q ≤ p is such that ȧw ∈ Ẋ, by repeating the same arguments as before, we get
that q ⊩HS ȧv ∈ Ẋ as well. Now, simply note that if v0 ∈ span(E∗) and v1 /∈ span(E∗ ∪ {w}),
then both v = v0+v1 and v0 satisfy the conditions, and therefore q ⊩HS ȧv, ȧv0 ∈ Ẋ and therefore
q ⊩HS ȧv + ȧv0 ∈ Ẋ, and since we are working over F2, this is the same as q ⊩HS ȧv1 ∈ Ẋ.
Therefore, q ⊩HS Ẋ = Ȧ. Of course, the alternative is that no w /∈ span(E∗) has a condition
q ≤ p such that q ⊩HS ȧw ∈ Ẋ, in which case Ẋ ⊆ {ȧw | w ∈ span(E∗)}•.

Exercise 12.3. Show that Ȧ is amorphous, but it is not strongly amorphous. In fact, for any n < ω,
there is some m > n, such that there is a partition of A into sets of size m.

32This property makes A a strongly amorphous set.
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Exercise 12.4. Show that any linear operator on A in the symmetric extension must be scalar
multiplication.

Remark. We did not use the fact that we are working over F2, except for two minor places where we
did not have to worry about scalar multiplication. Of course we can repeat the argument over any
field F and get the same result. The difference, of course, is that the space will not be amorphous
if it is over an infinite field.

12.3 Basic transfer theorem

The essence of the edict “groups preserve structure, filters preserve subsets” can be seen in
full-force in the previous example. Ultimate, a countably generated vector space over a finite
field is just a countable set. The filters of subgroups were ultimately the same, but the groups
themselves differed enough to preserve significantly different structures.

We can try and formalise this idea and create a basic transfer theorem.

Definition 12.7. Let M ∈ V be a structure in a first-order language L, and let W ⊆ V [G] be a
symmetric extension of V . We say that N ∈ W is a symmetric copy of M if V [G] |= M ∼=L N .

We saw, in the previous examples, that A was a symmetric copy of ω in the empty language
in the first one, and a symmetric copy of F(ω)

2 in the second example.
Let L be a first-order language and let M be an L-structure. Given a group G ⊆ Aut(M)

and an ideal of subsets of M , I,33, we have a natural filter of subgroups associated with I,
generated by fix(A) = {π ∈ G | π ↾ A = id} for some A ∈ I. Fixing such L,M,G , and I, say
that X ⊆ M is stable under π ∈ G if π“X = X, and it is stable under H ∈ F if it is stable
under all π ∈ H. This notion, of course, extends to n-ary relations as well. Note that the stable
sets form an algebra of sets which is closed under unions, intersections, and complements.

Exercise 12.5. Suppose that I is closed under G , that is π“A ∈ I whenever A ∈ I, then the
natural filter of subgroups is normal.

Theorem 12.8 (Basic transfer theorem). Let L be a first-order language, M an L-structure,
GM an automorphism group of M , and I an ideal of subsets of M which contains all singletons
and is closed under GM . Then there is a symmetric extension in which there is a symmetric
copy of M , N , such that every subset of Nk is a symmetric copy of a stable relation on M .

Proof. Take λ = |M |+ and let P be Add(λ,M × λ) with G = GM ≀ S<λ. We let the filter of
subgroups, F , be generated by fix(E) = {π ∈ G | π ↾ E = id} where E has the following
properties:

1. EM = {m ∈ M | ∃α, ⟨m,α⟩ ∈ E} ∈ I and

2. for any m ∈ M , Em = {α < ω | ⟨m,α⟩ ∈ E} ∈ [λ]<λ.

We let ẋm,α = {⟨p, β̌⟩ | p(m,α, β) = 1}, ȧm = {ẋm,α | α < λ}•, and Ṅ = {am | m ∈ M}•.
33Recall that ideals of sets are closed under finite unions and subsets.
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Claim. The following hold.

1. ⟨P,G ,F ⟩ is a homogeneous system.

2. πȧm = ȧπ∗m.

3. If p, q are two conditions, then there is some π such that πp is compatible with q and
π∗ = id.

Proof of Claim. We have essentially seen all three in action before, so we will simply prove (3).
For every m ∈ supp(p)M , let πm be a permutation of λ such that supp(p)m ∩ supp(q)m = ∅.
Finally, let π be such that π∗ = id and πm is the selected permutation for m ∈ supp(p)M or
id otherwise. It is not hard to verify that πp is indeed compatible with q, as they now have
disjoint domains by design.

For each n-relation symbol R, we define ṘN = {⟨ȧm0 , . . . , ȧmn−1⟩• | ⟨m0, . . . ,mn−1⟩ ∈ RM }•.
Since GM is a group of L-automorphisms, it is not hard to see that ṘN are preserved by any
π ∈ G . It is also not hard to see that with this definition, 1 ⊩ “Ṅ is a symmetric copy of M”.

Finally, if Ẋ ∈ HS is such that p ⊩HS Ẋ ⊆ Ṅ , let E be a support for Ẋ. If p ⊩HS ȧm ∈ Ẋ,
then for all π ∈ fix(E), πp ⊩ πȧm = ȧπ∗m ∈ Ẋ. It is enough to show that p and πp can be
made compatible by some σ for which σ∗ = id. In that case, no extension of p can force to the
contrary, and so p must have forced ȧπ∗m ∈ Ẋ as well.

Since π ∈ fix(E), it must be the case that πp ↾ E = p ↾ E. But, we can now repeat the
same proof as in the claim on the coordinates outside of E. So, if p ⊩HS ȧm ∈ Ẋ, then
p ⊩HS {ȧπ∗m | π∗ ∈ fix(EM )}• ⊆ Ẋ. In particular, p must force that Ẋ contains a copy of a
stable set.

However, if p ⊩ ȧm /∈ Ẋ, the same argument shows that the orbit of ȧm is disjoint from
Ẋ. And so we get the wanted conclusion. Finally, since P is λ+-closed, it is the case that any
subset of M in the generic extension lies in the ground model, so we only need to worry about
•-names.

Exercise 12.6. Show that 1 ⊩HS “Ṅ is isomorphic to M̌” if and only if the filter of subgroups is
improper (i.e., contains the trivial group).

We can now apply this theorem for a myriad of situations. Taking the algebraic closure
of Q with its automorphism group will produce an algebraic closure of Q which cannot be
well-ordered.
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Chapter 13

Preserving mild choice principles

13.1 Dependent Choice

Definition 13.1. Recall that DCκ is the statement “If T is a κ-closed tree, then T has a
maximal node or a chain of order type κ”. We use DC to denote DCω and DC<κ to denote
∀λ < κ,DCλ.

Exercise 13.1. If κ is singular, then DC<κ implies DCκ. Consequently, when discussion about DC<κ

we may always assume that κ is regular. Otherwise, DC<κ implies DC<κ+ .

Proposition 13.2. DC<κ is equivalent to “Every κ-closed forcing is κ-distributive”.

Proof. Assume DC<κ, and let P be a notion of forcing which is κ-closed and for some γ < κ,
let {Dα | α < γ} be a family of dense open subsets of P and let p be a condition. Since DCγ

holds, consider the tree of all sequences p⃗ = ⟨pα | α < β⟩ for some β < γ such that pα ∈ Dα

and pα+1 ≤P pα ≤P p. Since P is κ-closed, this tree is γ-closed, so by DCγ it has a branch, some
⟨pα | α < γ⟩. But since P is κ-closed, there is some q ≤P pα for all α < γ, so the intersection of
the Dα is dense.

In the other direction, assuming DC<κ fails, then there is a least λ < κ and a tree T which
is λ-closed, without maximal nodes, and no branches of order type λ, note that this implies
vacuously that T must have height at most λ and that it is κ-closed as well. Taking Dα to be
all the nodes of rank above α, we have that {Dα | α < λ} is a family of dense open sets with
an empty intersection.

Proposition 13.3. Assume ZFC holds in the ground model. Let ⟨P,G ,F ⟩ be a symmetric
system and suppose that P is κ-closed and F is κ-complete. Then 1 ⊩HS DC<κ.

Proof. Suppose that Ṫ ∈ HS and p ⊩HS “Ṫ is a λ-closed tree without maximal nodes” for some
λ < κ. We will find some q ≤ p and ḟ ∈ HS such that q ⊩HS “ḟ : λ̌ → Ṫ is a branch”. Set p0 = p
and ṫ0 ∈ HS is a name such that p0 ⊩HS “ṫ0Ṫ is the root”. Continue by recursion, using the
fact that P is λ-closed and that Ṫ is forced to be λ-closed. Finally, let q ≤ pα for all α < λ and
let ḟ = {⟨α̌, ṫα⟩• | α < λ}•. Since F is κ-complete, the intersection of all the sym(ṫα) is in the
filter and so ḟ ∈ HS as wanted.

We can make the following general statement which will simplify our lives. Say that V is
κ-closed in W , if for any f ∈ W such that f : γ → V for γ < κ, it holds that f ∈ V .
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Theorem 13.4. Suppose that V ⊆ W are models of ZF. If V is κ-closed in W and W |= DC<κ,
then V |= DC<κ.

Proof. Let λ < κ be some cardinal. If T is a λ-closed tree in V , then by closure of V , T is
λ-closed in W . Since W |= DCλ, T has a branch in W . It is not hard to see that this branch
must be in V .

Proposition 13.5. We can replace “P is κ-closed” by “P is κ-c.c.” in the statement of Propo-
sition 13.3.

Proof. It is enough to show that HSG is κ-closed in V [G]. We may also assume that ⟨P,G ,F ⟩
is tenacious. Suppose that ḟ is a P-name such that some p forces that dom ḟ = λ̌ < κ̌ and that
rng ḟ is included in HS.

Since P is κ-c.c., for every α < λ, let Dα be a maximal antichain such that if pα ∈ Dα, then
there is some ẋpα ∈ HS such that pα ⊩ ḟ(α̌) = ẋpα . Let ḟ∗ = {⟨pα, ẋpα⟩ | pα ∈ Dα, α < λ}.
Since λ < κ and |Dα| < κ, we have that

⋂
α<λ

⋂
p∈Dα

fix(p) ∩ sym(ẋp) ∈ F , so ḟ∗ ∈ HS. It is
not hard to see that p ⊩ ḟ = ḟ∗, and therefore HSG must be κ-closed, as wanted.

When we have a condition which holds for both c.c.c. and σ-closed forcings, the natural
question is to check if it holds for proper forcing. Namely, will assuming P is proper suffice to
preserve DC?

Proposition 13.6. Assume that ZFC holds in V and suppose that ⟨P,G ,F ⟩ is a symmetric
system such that P is proper and F is σ-complete. Then 1 ⊩HS DC.

Proof. Let ḟ be a name such that p ⊩ ḟ : ω̌ → HS. We let θ be a large enough regular cardinal,
and let M ≺ H(θ) be a countable elementary submodel such that ⟨P,G ,F ⟩, ḟ , p ∈ M . Then
for every n < ω, Dn = {p̄ | p̄ ⊥ p∨ ∃ẋ ∈ HS, p̄ ⊩ ḟ(ň) = ẋ} must also be in M , by elementarity,
and therefore if q ≤ p is M -generic, it follows that Dn ∩M is predense below q. For p̄ ∈ Dn ∩M ,
let ẋp̄

n be the name that p̄ decided to be the value of ḟ(ň), then ḟ∗ = {⟨p̄, ẋp̄
n⟩ | n < ω, p̄ ∈ Dn}

is a name in HS, since we can intersect sym(ẋp̄
n) and fix(p̄) over all the countably many values

we have.
Clearly, q ⊩ ḟ = ḟ∗. This holds for any p and ḟ , so it must be that HSG is σ-closed in V [G],

and so DC holds there.

Remark. It is worth noting that there is a generalisation of properness to κ which is uncountable.
It is simply not a very interesting notion, as it fails to have good iteration properties and things can
get very disastrous very quickly. It is true, however, that the above proposition will generalise in the
same sense.

Theorem 13.7 (Improved transfer theorem). In the conditions of Theorem 12.8, if the
ideal of sets is κ-closed we can require that the symmetric extension satisfies DC<κ.

13.2 Hartogs, Lindenbaum, and weird partitions

Recall that for a set X, the Hartogs number of X, denoted by ℵ(X), is sup{α ∈ Ord | α ≤ X},
and the Lindenbaum number of X, denoted by ℵ∗(X), is sup{α ∈ Ord | α ≤∗ X}.34

34Here A ≤∗ B if there is a partial surjection from B onto A. This relation is transitive and reflexive, but ZF
does not prove it to be antisymmetric.
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Theorem 13.8. Given any λ ≤ κ, it is consistent with ZF that there is a set X such that
ℵ(X) = λ and ℵ∗(X) = κ.

Proof. Let P be Add(ω, κ × λ), with the permutation group G ⊆ Sκ×λ of those permutations
which move < λ points, with the action on the index set defined in the usual way. The filter F
is given by the following groups. For E ∈ [κ]<κ, E′ ∈ [E × λ]<λ, let HE,E′ be the group of π
such that:

1. π ↾ E × λ ∈ {id} ≀ Sλ.

2. π ↾ E′ = id.

In other words, π fixes pointwise a set of size < λ, and also for < κ coordinates on the κ-axis,
π “freezes” these coordinates. We will refer to E as the “weak support” and E′ as the “strong
support”. We write p ↾ E to denote p ↾ E × λ if E is a weak support, and p ↾ E′ is well-defined
in the case of a strong support. We first prove the following homogeneity lemma.

Lemma 13.9. Let HE,E′ ∈ F and suppose q, q′ are two conditions such that q ↾E′ is compatible
with q′ ↾ E′, then there is some π ∈ HE,E′ such that πq is compatible with q′.

Proof of Lemma 13.9. For any ⟨α, β⟩ ∈ supp q where α /∈ E, we have free reign in moving
⟨α, β⟩ outside the support of q′, so we may find some α′ such that {α′} × λ∩ supp q′ = ∅ and a
permutation πE ∈ HE,E′ such that πE“ supp(q \ q ↾ E) ⊆ {α′} × λ. For any α ∈ E we can find
some πα ∈ Sλ such that πα moves the αth coordinate in supp(q \ q ↾ E′) to be disjoint of the
support of q′ at α. Now, let π be the permutation which is πα for α ∈ E and πE otherwise.

We let ẋα,β = {⟨p, ň⟩ | p(α, β, n) = 1}, Ẋα = {ẋα,β | β < λ}• and Ẋ =
⋃

α<κ Ẋα.
It is not hard to see, as we did previously, that πẋα,β = ẋπ(α,β). Therefore all of the names

above are in HS. Moreover, if µ < κ, then {⟨α̌, Ẋα⟩• | α < µ}• ∈ HS, so we immediately get
that 1 ⊩HS ℵ∗(Ẋ) ≥ κ̌, by considering the function {⟨ẋα,β, ξ̌α⟩• | α < κ}• where ξα = α for
α < µ or 0 otherwise.

and similarly for any µ < λ and a fixed α < κ, {⟨β̌, ẋα,β⟩• | β < µ}• ∈ HS as well, so
1 ⊩HS ℵ(Ẋ) ≥ λ̌.

It remains to show that both of these inequalities are in fact equalities. We start with the
ℵ∗ case. Suppose that ḟ ∈ HS and p ⊩HS ḟ : Ẋ → κ̌. Let H = HE,E′ ⊆ sym(ḟ) and we may
assume without loss of generality that H ⊆ fix(p) as well.

It follows that if ⟨α, β⟩ /∈ E′ and q ≤ p such that q ⊩HS ḟ(ẋα,β) = ξ̌, then q ↾ E′ ∪ {⟨α, β⟩}
already forces that. Simply apply the above lemma to HE∪{α},E′∪{⟨α,β⟩}.

Next, since P is a c.c.c. forcing, for each ⟨α, β⟩ /∈ E′ there is a maximal antichain Dα,β below
p which decides the possible values of ḟ(ẋα,β). If π ∈ H, then π“Dα,β is a maximal antichain
below p which decides the values of ḟ(ẋπ(α,β)), and so must agree with the same set of values
that Dπ(α,β) have produced.

In particular, it follows that the image of ḟ outside the strong support is fully determined
by the orbits under H. Namely, if π ∈ H and π⟨α, β⟩ = ⟨α′, β′⟩, the two antichains Dα,β and
Dα′,β′ must have the same countable set of possible values for ḟ(ẋα,β) and ḟ(ẋα′,β′) respectively.
Therefore, if ⟨α, β⟩ is not in the weak support, the orbit is any other point not in the weak
support, and therefore there can only be countably many values attained by any point there,
and within the weak support (but outside the strong support) this value only depends on α,
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so there can be at most < κ different values to ḟ , so p must force that it is not surjective.
Therefore 1 ⊩HS ℵ∗(Ẋ) = κ̌.

To prove that 1 ⊩HS ℵ(Ẋ) = λ̌, suppose that ḟ ∈ HS and p ⊩HS ḟ : λ̌ → Ẋ. Let H = HE,E′

be such that H ⊆ sym(ḟ) ∩ fix(p). Suppose that q ≤ p was such that for some ⟨α, β⟩ /∈ E′,
q ⊩HS ḟ(ξ̌) = ẋα,β. We can find some ⟨γ, δ⟩ /∈ E′ ∪{⟨α, β⟩} such that {α, γ}∩E ̸= ∅ if and only
if α = γ, such that ⟨γ, δ⟩ /∈ supp q, and therefore the 2-cycle, π, switching ⟨α, β⟩ and ⟨γ, δ⟩ is in
H and q is compatible with πq. But that means that q ∪ πq ⊩HS ẋα,β = ḟ(ξ̌) = ẋγ,δ, which is
impossible, since ḟ is supposed to be a function. Therefore, no such q exists to begin with, and
therefore p must force that the image of ḟ is included in {ẋα,β | ⟨α, β⟩ ∈ E′}, so in particular,
it is not injective.

Exercise 13.2. See how much Dependent Choice we can preserve or fail by varying the different
parameters of this symmetric system.

Theorem 13.10. It is consistent with ZF + DC<κ that there is a partition of the real numbers
with cardinality strictly greater. Namely, there is a set X such that 2ω maps onto X, into X,
but not at the same time.

Proof. Let κ > 2ℵ0 be any regular cardinal, we force with Add(ω, κ×ω). Our permutation group
is going to be G = {id}≀Sω, which means that if we think about the forcing as adding a sequence
of length κ of countable sets of reals, then the action of the permutation group on the forcing is
permuting each of the blocks independently. For E ⊆ κ, we let fix(E) = {π ∈ G | π↾E×ω = id},
and F is the filter generated by {fix(E) | E ∈ [κ]<κ}. So, in other words, we fix the blocks
indexed by E pointwise.

Since this filter of groups is κ-complete and Cohen forcing is c.c.c., we get that DC<κ holds
in the model. Now, let ẋα,n = {⟨p, m̌⟩ | p(α, n,m) = 1} and let Ẋα = {ẋα,n | n < ω}•.
Easily, πẋα,n = ẋπ(α,n) and therefore πẊα = Ẋα. Therefore, these names as well as the name
⟨Ẋα | α < κ⟩• are all in HS. Note that 1 ⊩HS |Ẋα| = ℵ0 for all α < κ, as fix({α}) fixes pointwise
the obvious enumeration of Ẋα, and therefore 1 ⊩HS κ < ℵ([2ω]ω).

Since 2ω always maps onto [2ω]ω, and always injects into [2ω]ω, if we can show that κ ≥ ℵ(2ω),
then the map from 2ω onto [2ω]ω will induce a partition of the reals which has the wanted
properties.

Suppose that ḟ ∈ HS and p ⊩HS ḟ : κ̌ → 2̇ω. Let E be such that fix(E) ⊆ sym(ḟ) ∩ fix(p),
and let q ≤ p be such that for some α /∈ E and some n < ω, q ⊩HS ḟ(ξ̌) = ẋα,n. Easily, we
can find large enough m such that ⟨α,m⟩ /∈ supp q and consider the permutation π which is the
2-cycle (⟨α, n⟩ ⟨α,m⟩). As usual, πq and q are compatible, but this is impossible, since that
implies ḟ is not a function. Therefore, no such q exists, so p ⊩HS rng ḟ ⊆ {ẋα,n | α ∈ E,n < ω}•,
and in particular, this set cardinality < κ so ḟ cannot be injective.

Exercise 13.3. Show that in the construction above, every generic real is symmetric.

Exercise 13.4. Show that we can partition the reals in the construction given above such that the
partition is incomparable in cardinality with 2ω.

Exercise 13.5. What happens in the construction above if we simply require κ > 2ℵ0?

Exercise 13.6. Analyse ℵ(2ω) and ℵ∗(2ω) in the Feferman–Levy model. Conclude that there are
strange partitions of 2ω in that model as well.
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13.3 Restricted choice

Theorem 13.11. Let κ be a regular cardinal, then it is consistent with ZF that ACWO holds
and DCκ holds, but DCκ+ fails.

Proof. We force with Add(ω, κ+), G is Sκ+ , and F is generated by fix(E) = {π ∈ G | π↾E = id}
for E ∈ [κ+]<κ+ . The resulting model satisfies DCκ, as we have seen before. As usual, we let
ẋα = {⟨p, ň⟩ | p(α, n) = 1} and Ẋ = {ẋα | α < κ+}•.

It is as we have seen before, ẋα and Ẋ are all in HS, and indeed Ẋ<κ+ is a tree witnessing
the failure of DCκ+ . It remains to show that if λ is an ordinal and Ḟ ∈ HS such that p ⊩HS “Ḟ
is a function with domain λ̌ and for all α̌ < λ̌, Ḟ (α̌) ̸= ∅̌”, then there is some q ≤ p and ḟ ∈ HS
such that for all α < λ, q ⊩ ḟ(α̌) ∈ Ḟ (α̌).

If λ ≤ κ, there is not much to verify, since DCκ implies ACκ. So we may assume that λ > κ.
Let E and E′ be two disjoint sets such that fix(E) ⊆ sym(Ḟ ) ∩ fix(p) and |E′| = κ, we will
define a name ḟ as above such that fix(E ∪ E′) ⊆ sym(ḟ).

First, for a fixed α, let Dα be a maximal antichain below p such that if q ∈ Dα, then there
is some ȧq

α ∈ HS such that q ⊩ ȧq
α ∈ Ḟ (α̌). We may assume that ȧq

α is such that any condition
appearing inside of it is below q, otherwise replace ȧq

α by

{⟨r, ẏ⟩ | r ≤ q, r ⊩ ẏ ∈ ȧq
α, ẏ appears in ȧq

α},

note that this name is symmetric as witnessed by sym(ȧq
α)∩fix(q). Next, define ȧα =

⋃
q∈Dα

ȧq
α.

This name is again in HS, since |Dα| ≤ κ and F is κ+-complete, it follows that ȧα ∈ HS, and
clearly p ⊩ ȧα ∈ Ḟ (α̌).

We want to say that this completes the proof, since we can take {⟨α̌, ȧα⟩• | α < λ}• to be ḟ .
But unfortunately, λ is too big for us to argue so simply that this name is in HS. If, however,
we can show that ȧα can be replaced by some name stable under fix(E ∪ E′), this will then
complete the proof.

For each ȧα, let Eα be such that fix(Eα) ⊆ sym(ȧα). We can find some π ∈ G such that:

1. πα ∈ fix(E).

2. πα“Eα ⊆ E ∪ E′.

The reason for that is that |Eα \ E| ≤ |E′|. Let ċα = παȧα. Then παp ⊩ παȧα ∈ παḞ (παα̌),
but since πα ∈ fix(E) we get that p ⊩ ċα ∈ Ḟ (α̌). Finally, we let ḟ = {⟨α̌, ċα⟩• | α < λ}•, then
fix(E ∪ E′) ⊆ sym(ḟ) and therefore ḟ ∈ HS as wanted.

Exercise 13.7. Show that 1 ⊩HS ACẊ in the previous model.

Exercise 13.8. Show that if κ is a limit cardinal, the same construction with Add(ω, κ) instead of
Add(ω, κ+) cannot possibly satisfy ACκ.
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Chapter 14

Forcing without Choice: Peace is
sometimes an option.

14.1 Generically preserving some choice

Definition 14.1. Let X be a set, we say that P is ≤X-distributive if whenever {Dx | x ∈ X}
is a family of dense open sets,

⋂
x∈X Dx is dense. If X can be well-ordered, we have that

≤|X|-distributive is the same as κ+-distributive.

The reason we have to switch to ≤X is that in ZF we have little to no control and under-
standing of the structure of the cardinals below X, which can have some odd effects.

Theorem 14.2. Suppose that ACX holds and P is ≤X-distributive. Then 1 ⊩ ACX .

Proof. Suppose that Ḟ is a P-name such that p ⊩ “Ḟ : X̌ → Ẏ and Ḟ (x̌) ̸= ∅̌”. For each x ∈ X,
let Dx be the set {q ≤ p | ∃ẏ, q ⊩ ẏ ∈ Ḟ (x̌)}. Since D =

⋂
x∈X Dx is dense below p, there is

some q ≤ p in D. Such q satisfies that for all x ∈ X, {ẏ | q ⊩ ẏ ∈ Ḟ (x̌)} is a non-empty class.
Using Scott’s trick and ACX in the ground model, we can choose ẏx such that for all x ∈ X,
q ⊩ ẏx ∈ Ḟ (x̌). Therefore, {⟨x̌, ẏx⟩• | x ∈ X}• is a name for a choice function below q. Since D
is dense, it follows that p ⊩ ∃f∀x ∈ X̌(f(x) ∈ Ḟ (x)), as wanted.

In the other direction we can also say something.

Theorem 14.3. Suppose that P is ≤X-distributive and 1 ⊩ ACX , then ACX holds in the ground
model.

Proof. Let {Ax | x ∈ X} be a family of non-empty sets in the ground model. Then there is a
name ḟ and a condition p such that p ⊩ “ḟ(x̌) ∈ Ǎx for all x ∈ X”. For each x, let Dx be the
dense open set {q ≤ p | ∃a ∈ Ax, q ⊩ ḟ(x̌) = ǎ}. Since

⋂
x∈X Dx is dense below p, let q be a

condition in this set, then {⟨x, a⟩ | q ⊩ ḟ(x̌) = ǎ} is a choice function in the ground model.

Corollary 14.4. Suppose that P is ≤X-distributive. ACX holds if and only if 1 ⊩ ACX .

Definition 14.5. We say that P is ≤X-sequential if whenever ḟ is a P-name and p ⊩ ḟ : X̌ → Y̌ ,
for some Y , there is some q ≤ p and g : X → Y such that q ⊩ ḟ = ǧ. In other words, P does
not add new functions from X into the ground model.

Proposition 14.6. If P is ≤X-distributive, then it is ≤X-sequential.
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Proposition 14.7. We can weaken Theorem 14.3 to only requiring ≤X-sequentiality, rather
than distributivity.
Exercise 14.1. Suppose that P is a well-orderable forcing. If A = {Ai | i ∈ I} does not admit a
choice function, then 1 ⊩ “Ǎ does not admit a choice function”.
Exercise 14.2. Suppose that ACκ fails, show that there is a generic extension in which ACω fails.
Conclude that if ACω holds in all generic extensions, then ACWO holds in the ground model.

What about preserving DC? It turns out that even if a forcing is very distributive and DCκ

holds, we can still violate DC. Even worse, a sequential forcing can violate ACω.

14.2 Choiceless Properness

We need to be more explicit about what proper means, since even if we have countable ele-
mentary submodels, it is not entirely and immediately clear as to what is the right structure
that we want to take the submodel from. We have two options: (1) we can redefine H(κ) to be
{x | κ ≰∗ tcl(x)}, this is a good approximation for H(κ) in the context of ZFC and it can serve
us for this purpose; or (2) we can simply use Vα for a sufficiently nice α, since we are really
just interested in enough power sets to exist and enough recursive constructions to be doable
within our countable model, and we can always find a large enough and sufficiently nice α as a
consequence of the Reflection theorem.
Proposition 14.8. The following are equivalent:

1. DC.

2. Col(ω, ω1) is improper.

3. There is an improper forcing.

Proof. Clearly (2) implies (3), and (3) implies (1), since if DC fails, every forcing is proper just
by vacuous reasons: any H(κ) or Vα for a tail of the ordinals will simply have no countable
elementary submodels to witness the failure of properness. Finally, if DC holds, then ω1 is
regular. Therefore no suitable M will have a generic condition: if q ∈ Col(ω, ω1) and n /∈ dom q,
then q ∪ {⟨n, supω1 ∩M⟩} is incompatible with any condition in M ∩ {p | n ∈ dom p}.

Just to hammer the importance of DC to the theory of proper forcing, and in general,
consider the following theorem.
Theorem 14.9. DC holds if and only if no σ-closed forcing collapses ω1.

Proof. If DC holds, any σ-closed forcing is σ-distributive, and therefore adds no countable
sequences of ordinals. In particular, there is no surjection from ω onto ω1. If DC fails, let T be
a counterexample, that is a tree of height ω without branches and without maximal nodes, and
we may assume that the elements of T are functions from a finite ordinal into some set, ordered
by inclusion.

We define the forcing P to be the set {⟨t, p⟩ | t ∈ T, p ∈ ω<ω
1 , dom p = dom t} with the

ordering given by ⟨t, q⟩ ≤ ⟨s, p⟩ if and only if s ⊆ t and p ⊆ q. It is not hard to check that this
forcing collapses ω1, as it projects onto Col(ω, ω1).

On the other hand, if ⟨tn+1, pn+1⟩ ≤ ⟨tn, pn⟩ is a descending sequence of conditions, then
tn ⊆ tn+1 is increasing in T , so the sequence must be finite, or it would define a branch.
Therefore, by vacuous reasons, P is σ-closed.
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Theorem 14.10. Suppose that P is proper and DC holds, then 1 ⊩ DC.

Proof. Suppose that Ṫ is a name such that p ⊩ “Ṫ is a tree of height ω̌ without maximal nodes”.
Let M be a countable elementary submodel such that Ṫ , p,P are all in M , and let q ≤ p be an
M -generic condition. For all n < ω, let Dn = {p̄ ≤ p | ∃ṫ, p̄ ⊩ ṫ ∈ Ṫn}, where Ṫn is the name for
the nth level of the tree. By elementarity, Dn ∈ M for all n < ω, and so Dn ∩ M is predense
below q. Therefore, if we let Ṫ∗ = Ṫ ∩M , q ⊩ “Ṫ∗ is a tree of height ω̌ without maximal nodes”.

Let {ṫn | n < ω} be the set of all the names appearing in Ṫ∗, then Ḟ = {⟨ň, ṫn⟩• | n < ω}
is a name such that q ⊩ “Ḟ is a function from an infinite subset of ω̌ onto Ṫ∗”. By combining
these two facts we have that q forces that Ṫ has a countable subtree without maximal nodes,
so by recursion we can show that q ⊩ “Ṫ has a branch”, and so by a density argument, p must
already force that Ṫ has a branch as wanted.

Exercise 14.3. Show that if P is σ-closed, then P is proper (that is, verify that Theorem 8.5 holds
in ZF).

Remark. We will see later that a c.c.c. forcing, even in the presence of DC, need not be proper
and may collapse ω1. We can improve the definition of c.c.c., for example by requiring that 1 (or
equivalently, every condition) is M -generic for any suitable countable elementary submodel (using
Theorem 8.4 as a definition), to regain the properness of a c.c.c. forcing in ZF.

Exercise 14.4. Suppose that P has the property that if D is a predense set, then D contains a
countable predense subset. Show that P is c.c.c. and proper. Moreover, assuming DC, show that
this property is equivalent to “every condition is M -generic”.

Exercise 14.5. Show that PFA implies DCω1 .

14.3 Kinna–Wagner Principles

Definition 14.11. We say that A is an α-set (of ordinals) if there is some ordinal η such that
A ⊆ Pα(η).

Exercise 14.6. If A and B are α-sets, then A×B is equipotent with an α-set.

Definition 14.12. Kinna–Wagner [Principle for] α is the statement “Every set is equipotent
with an α-set of ordinals”. We write KWPα to denote this principle, and we write KWP to
denote ∃α KWPα.

Exercise 14.7. KWP0 is equivalent to AC. KWP1 implies that every set can be linearly ordered.

Theorem 14.13. Suppose that M and N are two models of ZF with the same α-sets of ordinals.
If M |= KWPα, then M = N .

Proof. Since M is a model of KWPα, given any η, we can encode ⟨V M
η ,∈⟩ as an α-set, so that

set must be in N . Since the relation is still extensional and well-founded (otherwise this would
be witnessed by an α-set in N), we can take the Mostowski collapse and get that V M

η ∈ N for
all η, so M ⊆ N .

In the other direction, let η be such that V N
η ⊆ M . By the above, we have that in fact

V M
η = V N

η , therefore we can code V N
η as an α-set in M . If A ∈ V N

η+1, then A defines an α-set
as a subset of that which codes V N

η . Therefore A ∈ M . So, by induction V N
η = V M

η for all η,
and so M = N .
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Theorem 14.14. Let α be an ordinal and let α∗ = sup{β + 2 | β < α}.35 If KWPα holds, then
any generic extension must satisfy KWPα∗.

Proof. We separate this to three parts. For the case α = 0, this is just the fact that AC is
preserved in generic extensions. Note that if G is a V -generic filter for some P ∈ V , then G
is equipotent with an α-set if P is, since G ⊆ P, and that for every a ∈ V [G] there is a name
ȧ ∈ V and a surjection iG : ȧ → a.

In particular, if we replace ȧ by some α-set, A, we have a function from A onto a, so
{i−1

G (x) | x ∈ a} is an (α + 1)-set. Therefore, KWPα∗ holds in the case that α is a successor
ordinal.

Finally, if α is a limit ordinal, note that we can write α-set, A ⊆ Pα(η), as the union of
{A∩ Pβ(η) | β < α}. Applying the previous argument, we can break the preimage of iG on this
stratification, getting the injection to be into {{i−1

G (x) ∩ Pβ(η) | x ∈ a} | β < α}, but that too
is an α-set when α is a limit ordinal, so KWPα∗ holds.

Remark. We will see that it is quite possible that KWP1 holds, but there is a generic extension
satisfying ¬KWP1. By the above, that extension must satisfy KWP2, and indeed, any further generic
extension must satisfy KWP2 as well.

Remark. We can also define KWP∗
α to mean “Every set is the surjective image of an α-set”. It is

not hard to see that KWP∗
α implies KWPα∗ , and that in fact the statement of Theorem 14.14 can

be modified to “If KWPα holds, then KWP∗
α holds in every generic extension”, we will see that as

a consequence, KWP∗
α can be weaker than KWPα. It is also not hard to see from the proof of the

theorem that if α = α∗, then KWPα is equivalent to KWP∗
α.

14.4 Small Violations of Choice

Definition 14.15. We say that SVC(S) holds if for every set x there is an ordinal η and a
surjection η × S → x. We write SVC to denote ∃S SVC(S).

Exercise 14.8. If SVC(S) holds and S is an α-set, then KWP∗
α holds, and therefore KWPα∗ holds.

Theorem 14.16. Suppose that SVC holds, then there is a forcing P such that 1 ⊩ AC. Moreover,
if DC<κ holds, we can require P to be κ-closed.

Proof. Let κ be the least such that DCκ fails, otherwise AC holds and P = {1} works. We
let P be the forcing S<κ, ordered by reverse inclusion. This forcing is κ-closed, since κ must
be a regular cardinal and DC<κ holds. If G is a V -generic filter, it is not hard to see that
V [G] |= |S| = κ, and therefore S can be well-ordered.

It follows that every x ∈ V can be well-ordered in V [G], since it is the image of η×S for some
η ∈ Ord, and in V [G] we have a well-ordering of η × S. Therefore G, being a subset of P, can
be well-ordered in V [G]. But this means that every x ∈ V [G] is the image of a well-orderable
set, and therefore V [G] |= AC as wanted.

Fact 14.17. Suppose that there is a forcing P such that 1 ⊩ AC, then SVC holds.

Fact 14.18. SVC holds if and only if the universe is a symmetric extension of a model of ZFC.

Fact 14.19. SVC holds if and only if the universe is V (x) where x is a set and V |= ZFC.

35So, α∗ is the successor in the case where α was a successor, or α itself otherwise.
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Chapter 15

Forcing over a symmetric extension

Many of the things we want to accomplish by forcing over a ZF models, the “weird counterex-
amples” in particular, are really situations where we constructed something very specific and
we want to work that one case out. This means that in a lot of cases what we really want is to
have a symmetric extension and have a forcing notion in that symmetric extension with which
we want to force. Over that symmetric extension.

The key point here is that the arguments here are really about considering a two-step
iteration P∗Q̇, but with the additional structure of the symmetries on P.36 One problem we are
faced with, is that there is not so much “a structure” but rather just a loose collection of tricks
one can use to make some arguments with. So we can just cover those by studying examples.

15.1 Forcing over the Cohen model

Recall the Cohen model, which we covered in section 10.4, is a model in which we force with
Add(ω, ω) and then used permutations to “kill” any well-ordering of the set of Cohen reals, A.

Definition 15.1. If A is any set, we write Col(A,B) to denote the forcing whose conditions
are partial functions p : A → B such that dom p is well-orderable and | dom p| < |A|.

We will always assume implicitly that A and B are infinite in this case, otherwise the forcing
is atomic and is not interesting.

Exercise 15.1. If G ⊆ Col(A,B) is a V -generic filter, then in V [G] there is a surjection from A
onto B.

Let ⟨P,G ,F ⟩ be the symmetric system we used to define the Cohen model. We will write,
as before, ȧn for the nth Cohen real and Ȧ = {ȧn | n < ω}• for the name for the Dedekind-finite
set of reals. We will use M to denote the actual Cohen model given by G ⊆ Add(ω, ω) as our
V -generic filter. We will be working in both V and M .

Exercise 15.2. Show that in the Cohen symmetric system, 1 ⊩HS ℵ∗(Ȧ) = ω̌1.

Theorem 15.2. Let A be the canonical set of Cohen reals in the Cohen model, then Q =
Col(A, κ) does not add any new sets of ordinals.

36And later, also the additional structure of taking a symmetric extension of a symmetric extension.
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Proof. Let Ẋ ∈ M be a Q-name such that q ⊩ Ẋ ⊆ η̌ for some η. We want to show that there
is some q̄ ≤Q q and Y ∈ M such that q̄ ⊩ Ẋ = Y̌ . Let us first try and get our bearing on the
situation.

If q ∈ Q, then q is a finite function, since A is Dedekind-finite in M . Moreover, since q itself
is a function from a finite subset of A to κ, there is some E ⊆ ω and a function f : E → κ, in
V , such that q is the condition given by {⟨ȧn, f(n)∨⟩• | n ∈ E}•. We will write q̇f to denote
this canonical name.

This means that Q itself has the canonical name {q̇f | f ∈ Col(ω, κ)}.37 Moreover, the
order, being simply reverse inclusion is also canonically inherited. Finally, let us understand
how these names interact with π ∈ G :

πq̇f = {π⟨ȧn, f(n)∨⟩• | n ∈ E}•

= {⟨πȧn, f(n)∨⟩• | n ∈ E}•

= {⟨ȧπn, f(n)∨⟩• | n ∈ E}•

= {⟨ȧn, (f ◦ π−1(n))∨⟩• | n ∈ π“E}•

= q̇f◦π−1 .

It follows quite immediately, then, that these canonical names are all in HS. Moreover, if Ẋ ∈ M
is a Q-name, then we can find a P ∗ Q̇-name, and we can project that name to a “P-name for a
Q̇-name”, which, since Ẋ ∈ M , we can take to be in HS. We will make the even more general
claim, that if [Ẋ] ∈ HS is this P-name, then its elements have the form ⟨p, ⟨q̇f , [ẋ]⟩•⟩ for some
p ∈ P and f ∈ Col(ω, κ).

Now, we go back to our q ⊩ Ẋ ⊆ η̌ situation. Since this holds in M , there is some p ∈ G
such that

p ⊩HS “q̇f ⊩ [Ẋ] ⊆ [η̌]”.

Since in M if you are of the form η̌, that means that [η̌] is really just a P-name, and in the
case where η ∈ V , we can in fact that that P-name to be η̌ itself, so especially in that case we
will confuse the canonical P-name with any other names for η̌. Let E be a finite support for
p, q̇f , and [Ẋ]. Note that in the case of q̇f , this simply means that dom f ⊆ E. Let us assume,
by extending, if necessary, that dom f = E as well as supp p = E.

For some α < η, let p̄ ≤ p and q̇f̄ ≤ q̇f be such that p̄ ⊩HS “q̇f̄ ⊩ α̌ ∈ [Ẋ]”. Then we actually
have that p̄ ↾ E ⊩HS “q̇f̄↾E ⊩ α̌ ∈ [Ẋ]”, since for any extension of p̄ ↾ E and q̇f̄↾E we can find a
permutation in fix(E) which moves that extension to be compatible with p̄ and with q̇f̄ .

However, q̇f̄↾E = q̇f . So we can now define the P-name,

Ẏf = {⟨p̄, α̌⟩ | supp p̄ = E, p̄ ⊩HS “q̇f ⊩ α̌ ∈ [Ẋ]”}.

It is easy to see that Ẏf ∈ HS, and therefore if Y = Ẏ G
f , M |= q ⊩ Ẋ = Y̌ as wanted.

In a nutshell, the proof shows that the real information, at least with regards to sets of
ordinals, comes from the finitely many Cohen reals that are relevant to defining the name Ẋ,
and once q decides where these will be mapped to, we can read off the entire set of ordinals.

Corollary 15.3. Forcing with Q over M preserves cofinalities (of ordinals) and (well-ordered)
cardinals.

37Hence the notation Col(A, κ).
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Corollary 15.4. M |= 1Q ⊩ Ǎ is Dedekind-finite.

Proof. Since A is a set of reals, any well-orderable subset of A can be coded as a set of ordinals.
If A was forced to be Dedekind-infinite, we had introduced a new countably infinite subset.
However, as we saw, Q does not add any sets of ordinals, so A must remain Dedekind-finite.

Remark. It is in fact true that in M every Dedekind-finite set can injected into ω× [A]<ω, although
this is not trivial. It follows, therefore, that Q preserves all Dedekind-finite sets over M .

Remark. If we define Colinj(A,B) to be {p ∈ Col(A,B) | p is injective}, we have a very different
picture. Indeed, if H is M -generic for Colinj(A, κ), then M [H] = V [Gκ], where Gκ is a V -generic
filter for Add(ω, κ). Indeed, A itself becomes the set of reals of size κ. So, in a sense, we can start
by adding ω Cohen reals, forget their enumeration, and then re-enumerate them of any size we wish,
without collapsing cardinals or changing cofinalities.

Fact 15.5. In the Cohen model every set can be linearly ordered. Indeed, KWP1 holds in
the Cohen model, although also BPI holds in the Cohen model and the two are independent.
Consequently, there are no amorphous sets.

Theorem 15.6. There is a forcing which adds an amorphous partition of A.

Proof. Let Q be the forcing whose conditions are equivalence relations over a finite subset of A.
We say that E1 ≤ E0 if E0 ⊆ E1 and the extension preserves inequivalence. In other words, if
¬(an E0 am), then ¬(an E1 am).

It is easy to see that if H ⊆ Q is M -generic, then in M [H],
⋃
H is a new equivalence

relation on A, which therefore defines a partition, P which is both infinite and its elements are
infinite. Our goal is to show that this partition is amorphous. For convenience, we will denote
the equivalence class of a ∈ A as a/P .

As before, we can give each e ∈ Q a canonical name, which is derived by an equivalence
relation on a finite subset of ω. We let [Ṗ ] be the P-name in HS for the canonical Q-name for
P . Suppose that Ẋ ∈ M is such that E0 ⊩ “Ẋ ⊆ Ṗ is infinite”, our goal is to show that e must
also force that the complement of Ẋ is finite. Suppose this is not the case, and so without loss
of generality that E0 ⊩ “Ẋ is co-infinite”.

Let p ∈ G be a condition such that p ⊩HS “Ė0 ⊩ [Ẋ] ⊆ [Ṗ ] is infinite co-infinite”. There is a
finite E ∈ [ω]<ω which is a support for all the relevant names. As before, we may assume that
p determines the canonical name for Ė0 and that supp p = E = dom e0, where e0 is the finite
equivalence relation on ω defining the canonical name Ė0. Let n,m /∈ E, and let q ≤ p and
E1 ≤ E0, given by an equivalence relation e1, be conditions which satisfy the following:

1. n and m are in new equivalence classes when passing from e0 to e1.

2. The cardinality of n/e1 is the same as the cardinality of m/e1.

3. There is a bijection π ∈ fix(E) which respects e1, switches n/e1, and m/e1 such that
πq = q.

4. q ⊩HS “Ė1 ⊩ [ȧn/P ] ∈ Ẋ, [ȧm/P ] /∈ Ẋ”.

The only difficulty is in (3), however, by extending e1 and q if necessary this is easy to
achieve. This, however, is impossible, since that means that πq = q and πĖ1 = Ė1, π[Ẋ] = [Ẋ],
but π[ȧn/P ] = [ȧm/P ]. Therefore, no such E0 exists, and so P must be amorphous in M [H].

Corollary 15.7. KWP1 can be violated generically.
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15.2 Separating closure, distributivity, and sequentiality

We know that closure and distributivity are distinct, but we can separate them even more in
terms of preservation of weak choice principles. We will see that assuming DC<κ, each property
preserves less and less choice. We start with the following exercise.

Exercise 15.3. Suppose that DC<κ holds. If P is κ-closed, then 1 ⊩ DC<κ.

Let us define the κ-Cohen model, for an uncountable regular κ. We force with P = Add(κ, κ).
We use the permutation group Sκ, acting as usual on P. The filter is given by fix(E) for
E ∈ [κ]<κ. As we have seen before, this model will satisfy DC<κ. As in the Cohen model, we
have ȧα and Ȧ to denote the generic subsets and the set collecting them. Let G be a V -generic
filter, and let M = HSG, with aα and A denoted the interpretation of the names in M .

Theorem 15.8. There is a forcing Q ∈ M which is κ-distributive, but 1 ⊩ ¬DC.

This is the “worst” we can expect, since we know that AC<κ must be preserved by such Q.

Proof. We let Q be the collection of all the well-orderable trees on a subset of A which do not
have any infinite branches. We say that t1 ≤ t0 if and only if t0 is a subtree of t1. Meaning, we
can extended any maximal node, or add new splitting nodes, but nothing between pre-existing
nodes in t0. It is not hard to see that if H ⊆ Q is M -generic, then

⋃
H is a tree on A which

has height ω.
We claim that this forcing is κ-distributive, and that this in itself implies that the generic

tree added by H does not have any branches. Note that any countable subset of A in M is
coded into the tree by some condition. That is, if A′ ⊆ A is a countable set in M , and t ∈ Q is
a condition, then there is some t′ ≤ t such that A′ ⊆ dom t′. This means that any branch would
have to be a new countable subset of A. But, since κ > ω, if we show that Q is κ-distributive,
then no such new subset can be added by Q, so the tree will have no branches and therefore
DC must fail in M [H].

As before, we can give each t ∈ Q a canonical name which is induced by a tree on a bounded
subset of κ in V , and therefore give Q itself a canonical name as well.

Let γ < κ and ⟨Dα | α < γ⟩ ∈ M be a family of dense open sets. Let ⟨Ḋα | α < κ⟩• ∈ HS
be a name such that some p ∈ G forced that to be the name for our sequence and that each Ḋα

is a dense open subset of Q̇. Note that since F is κ-complete, we can actually assume that the
name for the sequence itself is a •-name.

Now let ṫ be a canonical name and let E be such that fix(E) ⊆ fix(p) ∩ sym(ṫ) ∩ sym(Ḋα)
for all α < γ. By extending p and ṫ as needed, we may assume that E = supp p = dom ṫ.38

Let p′ ≤ p be an extension such that for all α < γ, there is some canonical condition ṫα such
that p′ ⊩ ṫ ≥ ṫα ∈ Ḋα. We can find such p′ since P itself is κ-closed and γ < κ. Note that by
the assumption that the names are canonical, this is really a statement about the trees which
define them in the ground model as well.

Let E′ ∈ [κ]<κ be a large enough set such that fix(E′) ⊆ sym(ṫα) for all α < γ and that
E ∪ supp p′ ⊆ E′. Next, choose for each α < γ a permutation πα : κ → κ such that πα ∈ fix(E)
and {πα“(E′ \E) | α < γ} is a pairwise disjoint family. This is possible, again, since κ is regular
and γ < κ and E′ ∈ [κ]<κ. The following hold:

1. q =
⋃

α<γ παp
′ is a condition, since dom παp

′ ∩ dom πβp
′ = E for all α ̸= β.

38We abuse the notation here, confusing between ṫ and the tree defining it, since the condition is assumed to
be of the canonical form.
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2. παp
′ ⊩HS ṫ ≥ παṫα ∈ Ḋα.

3. If ȧξ ∈ dom παṫα ∩ dom πβ ṫβ, for α ̸= β, then ξ ∈ E.

It follows from the three conditions that ṡ =
⋃

α<γ παṫα must be a condition as well, and indeed,
it is a canonical name for a condition. If ṡ was not a tree, this must be witnessed by a pair
which is in a single παṫα or in ṫ itself, which is impossible. Similarly, if the tree defining ṡ had
a branch, this would have to be witnessed by one of the conditions.

But, since ṡ clearly extends any and all παṫα, q ⊩HS ṡ ∈ Ḋα for all α < γ, and therefore we
found a condition q ≤ p and ṡ such that q ⊩HS “ṡ ≤ ṫ and ṡ ∈

⋂
α<γ Ḋα”, and so 1 ⊩HS “Q̇ is

κ̌-distributive” as wanted.

Theorem 15.9. There is a forcing Q ∈ M such that Q is κ-sequential, but 1 ⊩ ¬ACω.

Q is given by finite partitions of well-orderable subsets of A. This is a generalisation of
Theorem 15.6 and the proof that it adds an amorphous set is very similar. The proof that this
forcing is κ-sequential is the same idea as Theorem 15.8.

15.3 Preserving violations of choice: caring for initial segments

So, after we have worked so terribly hard to violate choice, how can we ensure that our forcing
is not going to destroy what we have already done? Clearly, if we make some large enough
initial segment of the universe countable, or generally well-orderable, this will happen. Indeed,
the fact that SVC holds in all symmetric extensions (of ZFC models) already tell us that it is
possible to force ZFC to hold again and destroy the beautiful chaos that we created.

But we can try and be a bit more subtle. Perhaps we added one failure at the level of the
real numbers or so, and now we wish to add another. How can we ensure that these two objects
do not interact?

Exercise 15.4. If κ is uncountable, then Add(κ, 1) well-orders [κ]<κ.

The problem, therefore, is finding a way to add new generic subsets to the universe without
adding bounded sets. In general, this is a very difficult task and it may very well be that it is not
even provable from ZF that such partial orders always exist. However, if we took a symmetric
extension of a model of ZFC, or equivalently, if SVC holds, we can indeed find such forcing.

Theorem 15.10. Suppose that SVC holds in V , then for every α there is a regular cardinal κ
and partial order Pκ such that Pκ adds generic subsets to κ without adding new sets of rank α.

Proof. Since SVC holds, there is some W ⊆ V such that V is a symmetric extension of W by
some symmetric system ⟨P,G ,F ⟩ and W |= ZFC. Let κ be a regular cardinal in W large enough
such that 1P ⊩ (|V̇α| + |P|W ) < κ̌.

Let Pκ be Add(κ, 1)W . By the choice of κ, it is easy to see that P is κ-c.c. in W , and by the
choice of Pκ we know it is κ-closed in W . Therefore, 1P ⊩P “P̌κ is κ-distributive”, as we saw in
Theorem 5.6.

Therefore, if G ⊆ P is W -generic which is used to define V , we have that in W [G], Pκ is still
κ-distributive. Suppose that in V we have {Dx | x ∈ Vα} as a family of dense open subsets of
Pκ, then in W [G] this family has size < κ, therefore its intersection is dense in Pκ. However, as
the intersection is defined from the family, rather from its well-ordering, this intersection is in
V . Therefore Pκ is ≤Vα-distributive in V , so it does not add subsets of Vα.
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Chapter 16

Intermezzo: One and a half step
towards Bristol

The Bristol model is a model in which KWP fails, and consequently, SVC must fail too. The
interesting thing about the Bristol model is that it is intermediate between L and L[c] where
c is a Cohen real. The general construction of the Bristol model is a class-long iteration of
symmetric extensions, and we will not cover it here. But it is an interesting example for both
a symmetric extension and forcing over a symmetric extension. Through this section we work
in L, or at least in a model of GCH, or at least in a model where 22ℵ0 = ℵ2. Throughout this
section, =∗ and ⊆∗ mean “up to a finite difference”.

Definition 16.1. Fix {Aα | α < ω1} to be a family of almost disjoint subsets of ω. We say that
Π: ω1 → ω1 can be implemented if there is π : ω → ω such that for all α < ω1, π“Aα =∗ AΠ(α).
We will use ι(π) to denote the permutation that π implements.

Definition 16.2. Let {Aα | α < ω1} be an almost disjoint family. For a countable I ⊆ ω1, we
say that B = {Bα | α ∈ I} is a disjoint approximation of {Aα | α ∈ I} if B is a pairwise disjoint
family satisfying that Bα =∗ Aα for all α ∈ I and

Aξ ∩
⋃

B is infinite ⇐⇒ ξ ∈ I.

If Bα ⊆ Aα for all α ∈ I, we say that B is a disjoint refinement. If for any countable I there is
a disjoint approximation, we say that {Aα | α < ω1} is a permutable family.

Proposition 16.3. If {Aα | α < ω1} is permutable, then every bounded permutation of ω1 can
be implemented.

Proof. Let Π be a bounded permutation and let I be its domain, i.e. Π ↾ ω1 \ I = id. Let
{Bα | α ∈ I} be a disjoint approximation, and let π be the order isomorphism mapping Bα to
BΠ(α) and the identity on ω \

⋃
α∈I Bα. Easily, ι(π) = Π.

Exercise 16.1. {Aα | α < ω1} is a permutable family if and only if there is {Bα | α < ω1} such
that Bα ⊆∗ Bβ for all α < β and Aα = Bα+1 \Bα. In particular, there exists a permutable family.

Our forcing is, as we mentioned, Add(ω, 1). Let us fix a permutable family {Aα | α < ω1}
and let G be the group of all permutations of ω which implement a bounded permutation of
ω1. Then G acts on Add(ω, 1) by πp(πn) = p(n).
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For a disjoint approximation, B, we let fix(B) = {π ∈ G | π ↾
⋃

B = id}. Note that
if π ∈ fix(B), then ι(π) ↾ I = id. Our filter of groups is generated by fix(B) for disjoint
approximations B.

For A ⊆ ω, we write P ↾ A as {p ∈ P | dom p ⊆ A}. Then, letting ċ be the canonical name
for the Cohen real, ċA is the canonical name for the Cohen real restricted to P ↾ A. Note that
if π : ω → ω is a permutation, then π induces an isomorphism between P ↾ A and P ↾ π“A, and
in particular, πċA = ċπ“A.

Let us say that a P-name is an A-name if it is a P ↾ A-name, and it is almost A-name if it
is a B-name for some B such that B =∗ A. Finally, let us say that a name for a set of ordinals
is “decent” if every name inside of it has the form ξ̌.

Proposition 16.4. For all α < ω1, ċAα ∈ HS.

Proposition 16.5. If ẋ ∈ HS and 1 ⊩HS ẋ ⊆ ω̌, then there is a disjoint approximation B and
a decent

⋃
B-name ẋ∗ ∈ HS such that 1 ⊩ ẋ = ẋ∗.

Proof. We let B be a disjoint approximation such that fix(B) ⊆ sym(ẋ). Let B =
⋃

B, then for
any p and n < ω, p ⊩ ň ∈ ẋ if and only if πp ⊩ ň ∈ ẋ for π ∈ fix(B). In particular, by the usual
homogeneity argument, p ↾ B ⊩ ň ∈ ẋ. Therefore, ẋ∗ = {⟨p, ň⟩ | dom p ⊆ B, p ⊩ ň ∈ ẋ} is a
decent B-name, and easily 1 ⊩ ẋ = ẋ∗.

Corollary 16.6. If ẋ ∈ HS then 1 ⊩ ẋ ̸= ċ.

Proposition 16.7. 1 ⊩HS ¬AC.

Proof. Let G be a V -generic filter and let M = HSG. Since V [G] is a Cohen extension, if
M |= AC, then M = V [r] for some real number r ∈ M . Therefore, there is a name ṙ ∈ HS
which is a decent

⋃
B-name for some disjoint refinement B. It follows that M must satisfy that

every set has a
⋃

B-name, but if I is the index set for B, and α /∈ I, then ċAα is not equivalent
to any

⋃
B-name

For each α < ω1, let Ṙα = {ẋ ∈ HS | ẋ is a decent almost Aα-name for a real}. We now
have that πṘα = Ṙι(π)(α). So, in particular, Ṙ = {Ṙα | α < ω1}• ∈ HS. In terms of objects,
each Ṙα is the “well-behaved name” for the reals of V [cAα ].

Exercise 16.2 (*). 1 ⊩HS Ṙ is ℵ1-amorphous. (Every subset of ṘG is countable or co-countable.)

The next step in the construction is actually to force a well-ordering of Ṙ. We have a
good candidate for that well-ordering, namely ρ̇ = ⟨Ṙα | α < ω1⟩•. Moreover, as the following
proposition shows, it is a very good candidate.

Proposition 16.8. ρ̇ /∈ HS, but for any countable I ⊆ ω1, ρ̇ ↾ I = ⟨Ṙα | α ∈ I⟩• ∈ HS.

Moreover, if π ∈ G , since πṘα = Ṙι(π)(α), we get that πρ̇ ↾ I is a “shuffled sequence” which
is given by a •-name. We can therefore define the name Q̇ for the forcing whose conditions are
these sort of initial segments. Namely,

Q̇ = {πρ̇ ↾ I | I ∈ [ω1]<ω1 , π ∈ G }•.

The order is given by inclusion, of course. This process is a “symmetrisation of a name”, where
we take a name (ρ̇ in this case), look at which parts of it are symmetric. Of course, these parts
are not likely to form a symmetric name themselves, since that would often imply we started
with a name in HS, so we close this collection under the automorphism group action. This will
often yield a “nice enough” name for a forcing which will add the name we started with.
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Theorem 16.9. 1 ⊩ ρ̇ is HS-generic for Q̇.

Proof. Suppose that Ḋ ∈ HS is a name such that p ⊩HS “Ḋ ⊆ Q̇ is a dense open set”. We
will find some η such that p ⊩HS ρ̇ ↾ η ∈ Ḋ. Let B be a disjoint approximation such that
fix(B) ⊆ sym(Ḋ), and we may assume without loss of generality that fix(B) ⊆ fix(p) as well.
We can assume, by extending B if need be, that α is the index set of B. We start by noting that
if α ⊆ A and q ≤ p is a condition such that q ⊩HS πρ̇ ↾A ∈ Ḋ for some π satisfying ι(π) ↾α = id,
then qHS ⊩ ρ̇ ↾A ∈ Ḋ. This is because we can find some τ ∈ fix(B) such that ι(τ) = ι(π)−1 and
τq = q. We can do that since ι(π) is the identity on α, so ι(π)−1 is also the identity on α, so it
can be implemented by some τ ∈ fix(B). The requirement τq = q is easy to adjust for.

Now, let q ≤ p be such an extension, since p forced that Ḋ is dense, there will be one. By
the observation, q ⊩HS ρ̇ ↾ A ∈ Ḋ. Since Ḋ is forced to be open, we let ηq = supA, and then
q ⊩HS ρ̇↾ηq ∈ Ḋ. Finally, there is a maximal antichain below p of such q, let η be the supremum
of the ηq, since Add(ω, 1) is a c.c.c. forcing, η < ω1. So p ⊩HS ρ̇ ↾ η ∈ Ḋ as wanted.

Finally, we want to claim that even though we well-ordered the set, we did not add any new
reals or sets of ordinals. And in particular, we could not have forced back the axiom of choice.
To do that, note that in V [c], Q is in fact isomorphic to Add(ω1, 1)V . Similar to the argument
we have seen in Theorem 15.10, we have that 1 ⊩HS “Q̇ is σ-distributive”. We will see later a
deeper reason for which Q does not add any sets of ordinals as well.

But before that, let us take a moment to think about all of those generic filters. In the
first example where we forced over the Cohen model with Col(A, κ), it is clear that the forcing
required adding generics over V [G]. In both the forcing violating KWP1, as well as in the
example of Theorem 15.8, we can slightly modify the symmetric system to obtain the resulting
model directly.39 But, in the case of the Bristol model, this is now very surprising, since the
forcing we are using is actually one that should have no generics in V [c] whatsoever.

39This should not be very surprising, after all, if a ⊆ V and a ∈ V [G], then V [a] is a generic extension of V .
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Chapter 17

Mixing symmetric systems:
products and iterations

17.1 Products

Suppose that ⟨Q0,G0,F0⟩ and ⟨Q1,G1,F1⟩ are two symmetric systems. We can define a sym-
metric system on P = Q0 × Q1 by taking G = G0 × G1, with (π0, π1)(q0, q1) = ⟨π0q0, π1q1⟩, and
taking F to be the filter generated by {H0 ×H1 | Hi ∈ Fi}. We will often abuse the notation
and simply write ⟨Q0,G0,F0⟩ × ⟨Q1,G1,F1⟩.

Exercise 17.1. Show that ⟨P,G ,F ⟩ is a symmetric system.

Theorem 17.1. Let ⟨P,G ,F ⟩ = ⟨Q0,G0,F0⟩ × ⟨Q1,G1,F1⟩ and let G = G0 × G1 be a V -
generic filter for P. Then HSG

F is a symmetric extension of HSG0
F0

by ⟨Q1,G1,F1⟩ using G1 as
the generic filter.

Proof. Let us denote by M0 the model HSG0
F0

. Suppose that ẋ ∈ M0 is hereditarily F1-
symmetric, we want to claim that there is some ẋ∗ ∈ HSF such that ẋG1 = ẋG

∗ .
We prove this by induction on the rank of ẋ. Let [ẋ] be a name in HSF0 such that [ẋ]G0 = ẋ.

We define ẋ∗ to be
ẋ∗ = {⟨⟨p, q⟩, ẏ∗⟩ | ⟨p, ⟨q̌, [ẏ]⟩⟩ ∈ [ẋ]}.

It is not hard to see that ẋG
∗ = ẋG1 . Let H0 be symG0([ẋ]) and let H1 ∈ F1 be such that

1Q0 ⊩ Ȟ1 = symG1(ẋ),40 which while is computed in M , is itself an element of V . We claim
that if (π0, π1) = π ∈ H = H0 ×H1, then πẋ∗ = ẋ∗.

To see that, first note that

πẋ∗ = (π0, π1)ẋ∗ = {⟨⟨π0p, π1q⟩, πẏ∗⟩ | ⟨⟨p, q⟩, ẏ∗⟩ ∈ ẋ∗},

so it is enough to understand how πẏ∗ behaves. Note that we can add to our induction hypothesis
that πẏ∗ defined with the above recursive definition, also satisfies that π0[π1ẏ] translates exactly
to πẏ∗, in which case the above computation of πẋ∗ simplifies back to ẋ∗.

Note that by a symmetry argument we can change the order of the product, so this holds
in the other direction as well.

40This is for simplicity, of course, the complete course of action would be to pick a tenacious condition in G0
which decided the value of H1 and then restrict H0 to also fix that condition. But for readability and general
concept purposes, we will pretend that this condition was simply 1Q0 .
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Exercise 17.2. Suppose that ⟨Q0,G0,F0⟩ and ⟨Q1,G1,F1⟩ are both homogeneous systems, then
⟨Q0,G0,F0⟩ × ⟨Q1,G1,F1⟩ is homogeneous as well.

We can also talk about infinitary product, although we now need to be more careful about our
supports. This, however, opens a door for a wonderful interplay of three different supports for
three different products: forcing notions, groups, and filters. In the context of the forcing notions
we already understand what a support is: it is the set of coordinates where the information is
not 1. In the context of the groups, this is the set of coordinates where the automorphism is
not id. In the context of the filters, this is the set of coordinates where the group is not Gα.

Theorem 17.2. It is consistent with ZF that every ultrafilter on ω is principal.

Proof. Let us consider the symmetric system given by Add(ω, 1) with its full automorphism
group as G , and with the improper filter, namely, the filter of subgroups containing the trivial
group. It is easy to see that this symmetric system is degenerate in the sense that every name
is in HS.

Let ⟨P,G ,F ⟩ be the finite support product of countably many copies of this system. We
claim that 1 ⊩HS“There are no free ultrafilters on ω̌”.

Suppose that U̇ ∈ HS is a name such that p ⊩HS “U̇ is an ultrafilter”. Since the product
is finitely supported, we let n be such that the support of the groups and p is below n. Let
ċn be the name of the nth Cohen real. If q ≤ p is such that q ⊩ ċn ∈ U̇ , let k be such that
dom q(n) ⊆ k, and let σk be the automorphism of Add(ω, 1) defined by

πnp̄(i) =
{
p̄(i) i < k

1 − p̄(i) k ≤ i

and let π ∈ G be such that πn = σk is the above and otherwise any other coordinate is the
identity.

Easily, πU̇ = U̇ and πq = q, therefore q ⊩ πċn ∈ U̇ . But q ⊩ ċn ∩ σk ċn ⊆ ǩ. Therefore q
must force that U̇ is principal, since it contains a finite set.

Remark. What the above shows is that now that we have introduced products of symmetric systems,
the improper filter allows us to combine models of ZFC into a model of ZF in a somewhat coherent
way. Indeed, it is a way to present symmetric systems given by our usual wreath product construction
by considering them as products of pointwise “degenerate” systems, in a way.

Lemma 17.3. Suppose that ⟨Qα,Gα,Fα⟩, for α < κ, are homogeneous systems. Then the
tenacious conditions of any support product are determined by the supports of the conditions
and the filters.

So, for example, if we took a full support product of the forcing notions, but finite support
product of the filters, then the conditions that are finitely supported are exactly the tenacious
ones.

Theorem 17.4. Suppose that ⟨Qα,Gα,Fα⟩, for α < κ are homogeneous systems. Let IP, IG , IF
be three ideals over κ containing all the singletons, then taking P =

∏IP
α<κ Qα, G =

∏IG
α<κ Gα,

and F =
∏IF

α<κ Fα, we have that ⟨P,G ,F ⟩ is equivalent to the case where I = IP ∩ IF is used
for all three.

Proof. By Lemma 17.3 we have that the tenacious conditions are exactly those with support in
I. We claim that if p ⊩HS φ(ẋ) and S is the support of sym(ẋ), then p ↾ S ⊩HS φ(ẋ). In the
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case that S ∈ IG , this is trivial, since any extension of p ↾ S can be made compatible with p by
the pointwise homogeneity.

However, in the general case, it is enough to note that if α /∈ S, we can assume without loss
of generality that p(α) = 1Qα . This is essentially the same argument, take any extension of
pα = p ↾ κ \ {α}, and it can be made compatible with p, therefore we may assume that α is not
in the support of p.

Note that the support of p ↾ S lies in I, as a subset of S ∈ IF and supp p ∈ IP. It follows,
therefore, that if ẋ ∈ HS, then we can assume that every condition which appears in ẋ is one
where every condition has a support in I, and therefore the I-support product will have the
same names which are hereditarily symmetric, and so the two systems are equivalent in the
sense of Theorem 10.19.

Remark. One is left to wonder why bother with the above theorem. It may not seem like much,
but it is often easy to prove some structural preservation theorems (e.g. cardinals are not collapsed;
Cohen reals are not added) by using a full-support product, or an Easton support product, etc. This
allows us to still take IF to be finite, which means that the preservation theorems will now hold for
the finite support product, assuming homogeneity.

We will not discuss products any further, since unfortunately, their major usefulness is in
class-sized products, rather than set-sized product. For example, we can arrange a Dedekind-
finite set A which can be mapped onto κ, for any fixed κ. If we want one that maps onto κ and
one that maps onto κ+, then simply taking the one that maps onto κ+ is sufficient. But, if we
wish to arrange that for all κ, then a class-sized product must be used.41

17.2 First example: Morris’ local step

Morris constructed a model in which ZF holds, but for any α, there is a set Aα which is the
countable union of countable sets, and ℵα < ℵ∗(P(Aα)). Such a model must fail SVC, since if
we force AC to hold, any such Aα must become countable and so ℵ∗(P(Aα)) = (2ℵ0)+ must be
larger than all the ordinals. Indeed, this model has a much more severe failure of SVC, there is
no extension of this model to a model of ZFC with the same ordinals.

The original proof by Morris was written in his Ph.D. and was never fully published as
a paper. It involved a class length iteration of symmetric extensions that was defined before
forcing, symmetric extensions, or iterations were properly clarified as we know them today.
Nevertheless, we can still study a local failure of the above. Namely, for a fixed κ, which we
can assume is regular, we can still ask to find a symmetric system which preserves “enough
cardinals” and adds some A is the countable union of countable sets with the above property,
whose power set can be mapped onto κ. For the usual simplicity, we will assume that 2κ = κ+.

Adding A is fairly simple. Consider ω × ω with the preorder ⟨i, n⟩ ≤ ⟨j,m⟩ ⇐⇒ i ≤ j.
With its automorphism group, and the ideal of sets generated by {n × ω | n < ω} we have,
by Theorem 12.8, a symmetric copy of this structure. Since each level is fixed pointwise, those
will be countable, and since the levels are not moved, their enumeration is also fixed, and so we
have that the symmetric copy is a countable union of countable sets.

More explicitly, P = Add(κ, ω × ω × κ), G is the group ({id} ≀ Sω) ≀ Sκ with the standard
action πp(π(n,m,α), β) = p(n,m,α, β), and the filter is generated by groups of the form

fix(n,E) = {π ∈ G | π ↾ n× ω × E = id}
41This is, of course, a gross oversimplification, and we can find quite a few natural situations where set-sized

products are just as useful and interesting.
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for n < ω and E ∈ [κ]<κ. We will often ignore E and simply write fix(n) to indicate that for
some suitable E the group is fix(n,E).42

We can now define names, ẋn,m,α = {⟨p, β̌⟩ | p(n,m,α, β) = 1}, ȧn,m = {ẋn,m,α | α < κ}•,
Ȧn = {ȧn,m | m < ω}• and Ȧ = {ȧn,m | n,m < ω}•.

Proposition 17.5. πẋn,m,α = ẋπ(n,m,α), πȧn,m = ȧπ∗(n,m) = ȧn,π∗
nm, πȦn = Ȧn, πȦ = Ȧ.

As a corollary from that, all of these names are in HS. But also ⟨ȧn,m | m < ω⟩• and
⟨Ȧn | n < ω⟩• are in HS. In other words, 1 ⊩HS “Ȧ is a countable union of countable sets”.

Proposition 17.6. 1 ⊩HS Ȧ is not countable.

Proof. Suppose that ḟ ∈ HS and p ⊩HS ḟ : ω̌ → Ȧ, let n be such that fix(n,E) ⊆ sym(ḟ).
Suppose that k < ω and p ⊩ ḟ(ǩ) = ȧn,0. Then there is some π ∈ fix(n,E) such that πp is
compatible with p and πȧn,0 = ȧn,1. This is, of course, impossible, as this implies p must force
that ḟ is not a function. Therefore, p must force that rng ḟ ⊆

⋃
{Ȧk | k < n}. In particular, it

is impossible for ḟ to be surjective.

Let M denote the symmetric extension, and let us work inside this model. We will define
a symmetric system in M which forces that κ < ℵ∗(P(A)). Moreover, we will do so without
adding any new sets of ordinals, so κ will not be collapsed, nor the real numbers change their
size.

We let T denote the “choice tree” of the sequence ⟨An | n < ω⟩. Namely, T =
⋃

n<ω

∏
k<nAk.

Note that the proposition above really shows that T has no branches, as a branch in the tree
would be a function from ω into an unboundedly many of the An. The forcing Q is going to
be a variation of the finite support product of κ × ω copies of T , we want to ensure that the
branches that are added by the different copies of T are almost disjoint. This will naturally
form a family of κ × ω different subsets of A, which we will then make into a Dedekind-finite
set that can be mapped onto κ.

So, a condition in Q is a finite sequence, ⟨ti | i ∈ E⟩ such that ti ∈ T and E ∈ [κ×ω]<ω, we
say that E is the support of the condition. We say that t ≤ s if the two conditions hold:

1. supp s ⊆ supp t and for all i ∈ supp s, si ⊆ ti.

2. For all i, j ∈ supp s, if ti(k) = tj(k), then k ∈ dom si ∩ dom sj .

In plain words, we are extending the support, and on each coordinate of the support we may
extend along the tree, but any new information must be pairwise distinct.

Our automorphism group, H , is the permutation group of κ×ω given by {id} ≀ Sfin
ω , where

Sfin
ω is the group of finitary permutations of ω, with the action, as expected, given by

π⟨ti | i ∈ E⟩ = ⟨tπi | i ∈ E⟩.

The filter K is generated by the subgroups fix(E) = {π ∈ H | π ↾E = id} with E ∈ [κ×ω]<ω.
We define ḃα,n = {⟨t, ǎ⟩ | ∃i, tα,n(i) = a} and Ḃα = {ḃα,n | n < ω}•. It is not hard

to verify, as usually do, that πḃα,n = ḃπ(α,n) and consequently, πḂα = Ḃα. Finally, we let
Ḃ = {ḃα,n | ⟨α, n⟩ ∈ κ × ω}•, then all these names are in HS, as is the canonical name for the
enumeration ⟨Ḃα | α < κ⟩•. So, trivially, 1 ⊩HS

Q κ̌ ≤∗ Ḃ.
42In reality, we can even allow E to vary over some countably many different sets, but since κ is regular this

will only make a difference if κ = ω.
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Proposition 17.7. 1 ⊩HS
Q Ḃ is Dedekind-finite.

Proof. Suppose that t ⊩ ḟ : ω̌ → Ḃ and let E be a finite support for t and Ḟ . We let ⟨α, n⟩ /∈ E
and let t′ ≤ t be a condition such that t′ ⊩ ḟ(ň) = ḃα,n. We can find some m large enough
such that ⟨α,m⟩ /∈ E ∪ supp t′ and take π to be the permutation which only exchanges between
⟨α, n⟩ and ⟨α,m⟩. Clearly, π ∈ fix(E) so πp = p and πḟ = ḟ as well. Moreover, πt′ and t′ are
compatible, as the second condition holds vacuously (as we increasing the support of either one
when considering t′ ∪ πt′). But this means that t′ cannot force that ḟ is injective, but it was
arbitrary, so t must force that ḟ is not injective.

We wish to argue that no sets of ordinals were added when taking the symmetric extension
of M . And for this we will need to go back to V and consider the whole structure. We have
very natural canonical names for the elements of T given by functions in ω<ω, as well as the
conditions in Q, etc. Note that also ˙H and ˙K have canonical names, since we cleverly chose
only finitary permutations of ω and finite sets, which are not changed from the ground model
to M .

It will be helpful to understand the canonical names for the conditions in Q, as well. These
are essentially functions from κ× ω → ω<ω with finite domain, so if f is such function,

ṫf =
{

⟨α̌, ň, ⟨ȧf(α,n)(m) | m < |f(α, n)|⟩•⟩•
∣∣∣ ⟨α, n⟩ ∈ dom f

}•
.

Therefore, if π ∈ G , the action πṫf is given by considering the action of π∗ on the elements of
ω<ω, as subsets of ω × ω.

Theorem 17.8. Suppose that in M , t ⊩HS Ẋ ⊆ η̌ for some ordinal η. Then there is some
Y ∈ M and t′ ≤ t such that t′ ⊩ Ẋ = Y̌ .

Proof. First, let us argue that in M we can assume that fix(supp t) ⊆ sym(Ẋ), since by homo-
geneity, if t′ ≤ t and t′ ⊩ ξ̌ ∈ Ẋ, then we can eliminate the information outside supp t from t′.
To complete the argument, we will have to finish the argument working in V .

Let [Ẋ] denote a name in HS for Ẋ, and let fix(n) be a such that fix(n) ⊆ sym([Ẋ]). Suppose
that p ⊩HS “ṫf ⊩Q ξ̌ ∈ [Ẋ]”. Without loss of generality we may assume that dom f = E1 is
such that p ⊩ fix(E1) = sym([Ẋ]).

Say that f is a short function if the condition it defines has the property that it cannot be
weakened without shrinking its support, and f is k-short if the condition holds above the kth
level of the tree. Let g ⊆ f be n-short with dom f = dom g, where n is as above,43 then we
claim that p ⊩HS “ṫg ⊩Q ξ̌ ∈ [Ẋ]”.

To see that, if h is such that ṫh ≤ ṫg with dom h = dom g, then for any k where h add
choices to level k, these must be pairwise different. Therefore, we can find a permutation of ω,
π∗

k which maps these values to the values of f at that level. And therefore we can find some
π∗ ∈ fix(n) for which π∗p is compatible with p and π∗ṫh is compatible with ṫf . So p cannot
force that an extension of ṫg disagrees with ṫf on the truth of ξ̌ ∈ [Ẋ].

Therefore, any n-short condition whose support is E1 must decide the entire content of [Ẋ],
which is what we wanted.

43Note that it is not necessary for g to be only defined up to n on its various coordinates!
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17.3 Second example: Cohen model for X and Monro’s models

Let X be any set such that ω ≮ |X|,44 in some model of ZF, we define the Cohen model
for X by repeating the construction of the Cohen model over X. Namely, P is Add(X,ω),
whose conditions are finite p : ω × X → 2 ordered by reverse inclusion; G is Sfin

ω , acting on
P by πp(πn, x) = p(n, x); and F is the filter generated by fix(E) for E ∈ [ω]<ω. We let
ȧn = {⟨p, x̌⟩ | p(n, x) = 1} and Ȧ = {ȧn | n < ω}•. It is the standard argument as we have seen
it many times by now that ȧn, Ȧ are all in HS.
Proposition 17.9. For any infinite Y ∈ V , 1 ⊩HS |Y̌ | ≰ |Ȧ| ≰ |Y̌ |.

Proof. Let ḟ ∈ HS and p be such that p ⊩ ḟ : Y̌ → Ȧ, and let E ∈ [ω]<ω be such that
fix(E) ⊆ sym(ḟ) ∩ fix(p). Let n /∈ E and let q ≤ p be such that q ⊩ ḟ(y̌) = ȧn for some y ∈ Y .
We can now find m /∈ E∪{n}∪ supp q and consider the permutation π which is the cycle (n m),
then πq is compatible with q, while also forcing ḟ(y̌) = ȧm, which is impossible. Therefore p
must force that rng(ḟ) ⊆ {ȧn | n ∈ E}•, which is a finite set so ḟ cannot be injective.

In the other direction the proof is similar: if p ⊩HS ḟ : Ȧ → Y̌ instead, taking n /∈ E and
let q ≤ p be such that q ⊩ ḟ(ȧn) = y̌, apply the same argument to obtain that q ∪ πq force
that ḟ is not injective.45 In particular, since any condition extending p has an extension which
forces that ḟ is not injective, it follows that no extension of p can force that ḟ is injective, and
therefore p must force that ḟ is not injective.

What this shows us is that by taking a Cohen model for X, we have added a new cardinality
to the universe. The Monro iteration is a sequence of models, starting with V |= ZFC,46 We
can set M0 = V and A0 = ω; then Mn is the Cohen model for An over Mn.
Theorem 17.10. For any n, Mn+1 and Mn+2 have the same n-sets of ordinals, and more
generally, going from Mn+1 to Mn+2 does not add any subsets of Mn.

Proof. First, note that the general claim implies the claim about n-sets of ordinals: since
ordinals are all in M0, any 0-sets of ordinals are subsets of M0, so these can only be added by
going into M1; by induction, Mn+1 contains all the n-sets of ordinals, etc.

Let us see that M1 and M2 have the same sets of ordinals. For that, we let P = Add(ω, ω) and
Q = Add(A1, ω), along with the group and filter, which are the same for both of these forcings,
so we will use HSP and HSQ to differentiate the symmetric names. We will implicitly assume that
any name for a condition in Q is a canonical name. That is, for some condition f ∈ Add(ω, ω),
q̇f is a canonical name for a condition if it has the form {⟨ň, ȧ1

m, ε̌⟩• | f(n,m) = ε}•. These, as
we have seen in the past, are all in HSP. Indeed, if we have a condition ⟨p, q̇⟩, we will always
assume that p is strong enough to decide that q̇ = q̇f for some f .

Suppose that X ∈ M2 is a set of ordinals and let Ẋ be a P ∗ Q̇-name for X. Since X ∈ M2,
we may assume, as we did in the Morris’ model, that [Ẋ], the P-name projection of Ẋ, is in
HSP and 1 ⊩HS

P [Ẋ] ∈ HS•
Q.

Suppose that ⟨p, q̇⟩ ⊩ ξ̌ ∈ Ẋ, Let us moreover assume, without loss of generality that p has
decided the set E1 ∈ [ω]<ω such that p ⊩HS

P fix(Ě1) ⊆ sym([Ẋ]).
By the usual homogeneity arguments, we may assume that supp q = E1 as well, and that

supp p = E0 is such that E1 ⊆ E0 and fix(E0) ⊆ sym([Ẋ]) as a P-name in M0. For readability,
let us denote by E•

0 the name {ȧ1
n | n ∈ E0}•.

44We can actually define this for arbitrary X, it is just more complicated and we will not need it here.
45Note that there is no problem for ḟ to be surjective!
46Or, as was tradition, V = L.
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Claim. p ⊩HS
P “q̇ ↾ E1 × E•

0 ⊩Q ξ̌ ∈ [Ẋ]”.

The claim is not meaningless, since it may very well be that the domain of q̇ is some E1 ×F •,
where F is much larger than E0.

Proof of Claim. Suppose that q̇′ is a name for a condition such that p ⊩P q̇
′ ≤Q q̇ ↾ E1 × E•

0 .
As we already know that E1 is the support of q, we may assume that p ⊩HS

P supp q̇′ = Ě1, as
outside that domain the conditions are compatible and there is no influence on the statement
ξ̌ ∈ [Ẋ]. So we can write dom q′ as E1 × E′

0.
Next, we can find some π ∈ fix(E0) such that E1 × π“(E′

0 \ E0)• ∩ dom q̇ = ∅. This means
that πp = p and πq̇′ is compatible with q̇. In particular, p cannot force that q̇′ ⊩ ξ̌ /∈ [Ẋ]. This,
by the usual forcing arguments, implies that p in fact forces that any extension of q̇ ↾ E1 × E•

0
must agree with q̇ on the truth of ξ ∈ X.

Using the claim we get that in M1, once a condition contains enough information, any
Ẋ ∈ HSQ for a set of ordinals will be fully determined. In particular, it will be in a name for a
set in M1. Analysing this proof shows that all we used was the fact that ξ was an element of M0.
Therefore, for a general Mn, if m ∈ Mn, we can repeat the same argument using P = Add(An, ω)
and Q = Add(An+1, ω), computed in Mn+1 to obtain the general result.

Corollary 17.11. For all k > n, Mk |= ¬KWPn.

Proof. Since Mk and Mn+1 have the same n-sets of ordinals, if KWPn was true in one of them,
by Theorem 14.13 we would have that Mk = Mn+1, but this is clearly false if k > n+ 1.

Fact 17.12. Mn is defined as V (An), and it is a model of KWPn.

This approach can be extended transfinitely, although the limit steps are not as simple to
deal with, to construct models where KWPα+1 holds and KWPα fails for all α < ω1. The thing
to note here is that for any countable length, the iteration will be isomorphic, externally of
course, to Add(ω, α) ∼= Add(ω, 1).

17.4 Some words on “upwards homogeneity”

In pretty much all the examples we have seen of forcing over symmetric extensions, to an extent,
we had some very nice and canonical names for conditions, and we can modify these using the
permutations of the first. In other words, if we have ⟨p, q̇⟩, we could normally find some weak
q̇∗ such that any two extensions of ⟨p, q̇∗⟩ can be made compatible using automorphisms of P
which fix p.

Let us attempt at the following definition.

Definition 17.13. We say that P ∗ Q̇ is upwards homogeneous if for any ⟨p, q̇⟩ and ⟨p, q̇′⟩ there
is some π ∈ Aut(P) such that πp = p and ⟨p, q̇⟩ is compatible with ⟨p, πq̇′⟩. If P is part of a
symmetric system ⟨P,G ,F ⟩, we will require that π ∈ G .

We are ignoring the fact that we need πQ̇ = Q̇, but we will discuss this in the following
section. Let us ignore that for now. Ideally, looking at the Morris and Monro iterations, we
would like to argue that if P∗Q̇ is upwards homogeneous, to an extent, any subset of V is added
during the P-step of the iteration.
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This seems like this should work, but it does not. First and foremost, it is easy to show that
without their symmetries, the Morris and Monro iterations will certainly add Cohen reals.47

Secondly, we can show that in the majority of the cases we have seen so far,48 we cannot
have q̇′ be any condition, but rather there will be some weakening of q̇ which depends on p, and
q̇ and q̇′ must both extend that weaker condition.

Finally, going through the proofs that no new sets of ordinals are added, which are generally
the same as “no ground model sets are added by Q” in the more general context,49 we see that
we actually need even more strength. Namely, we need to preserve some name [Ẋ] as well. So
really we need to have some sufficiently well-behaved filter of subgroups, or, in other words,
given any H in the filter and any condition p0, there is some p ≤P p0 such that in fix(p) ∩H we
can find an automorphism making q̇ and q̇′ compatible (assuming they agree on some condition
that depends on p and H).

This is all quite terrible. But it turns out that a lot of the natural constructions will satisfy
these conditions, at the very least up to a point. This is something that is very clear in the
Monro iteration, if our conditions has a sense of “support” and “content” (this would be the
information a condition carries on each new subset in its support, for example), the Q-side
permutations restrict the support to be manageable, whereas the P-side permutations allow us
to restrict the “content” in a relatively uniform manner. So, if we combine these two properties
we get that any symmetric name for a set of ordinals, or a subset of V in general, will be
determined by something that is bounded in both “support” and “content” and therefore can
be fully determined by a single condition.

Nevertheless, a full of a general definition of upwards homogeneity is much harder to get
right (if we want to have a ground model preservation theorem50), even in some considerable
generality, without it looking very artificial.

17.5 The two-step iterations

Let us now explore some of the basics of approaching a general two-step iteration of sym-
metric extensions. In this scenario, we have a symmetric system, ⟨Q0,G0,F0⟩ and a name
⟨Q̇1, Ġ1, Ḟ1⟩• ∈ HSF0 . We want to explore how to find the correct class of Q0 ∗ Q̇1-names which
“predicts” the iterated symmetric extension. Clearly, these are exactly the names which have a
“projection” to Q0 which is symmetric and is forced to be symmetric.

As we are clearly looking at Q0 ∗ Q̇1, the first step is to try and to understand how to turn
Ġ1 and G0 into automorphisms of the iteration. Let us define a concept that had been hidden
under the radar through this entire part of the notes.
Definition 17.14. Suppose that P is a forcing notion, π ∈ Aut(P), and Ȧ is a name. We say
that π respects Ȧ if 1 ⊩ πȦ = Ȧ. If Ȧ carries an implicit structure, we require that structure
to be preserved as well. If Ȧ is respected by all the automorphisms in a group G we will say
that G respects Ȧ.
Exercise 17.3. {π ∈ Aut(P) | π respects Ȧ} is a group.
Proposition 17.15. If π ∈ Aut(Q0), then ⟨q0, q̇1⟩ 7→ ⟨πq0, πq̇1⟩ is an automorphism of Q0 ∗ Q̇1
if and only if π respects Q̇1.

47E.g., {n | x ∈ an} in the Morris case, once we no longer are able to enumerate the new subsets this problem
“goes away”.

48The Bristol model is the not-so-obvious exception.
49Although this may not always be the case!
50We do, just to make it absolutely clear.
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So the first and foremost requirement is that G0 respects ⟨Q̇1, Ġ1, Ḟ1⟩•. Let us assume that
this condition holds, then.

Proposition 17.16. Suppose 1 ⊩Q0 σ̇ ∈ Aut(Q̇1), then ⟨q0, q̇1⟩ 7→ ⟨q0, σ̇q̇1⟩ is an automorphism
of Q0 ∗ Q̇1.

Definition 17.17. The generic semidirect product is the group G0 ∗ Ġ1 which is generated by
G0 and Ġ1 in the aforementioned way. Given ⟨π, σ̇⟩ such that π ∈ G0 and 1 ⊩HS

Q0 σ̇ ∈ Ġ1, the
action is given by ⟨π, σ̇⟩(p, q̇) = ⟨πp, π(σ̇q̇)⟩ = ⟨πp, πσπq̇⟩.

Note that we required that σ̇ ∈ Ġ1 is a symmetric statement, which means that σ̇ ∈ G1. This
is not a trivial requirement. However, on a dense set, it becomes very manageable. If σ̇ ∈ HS
and p ⊩ σ̇ ∈ Ġ1, then we can define a name σ̇∗ ∈ HS given by taking σ̇ below p and id• on any
incompatible condition. If p is tenacious, fix(p)∩sym(σ̇) witnesses that σ̇∗ ∈ HS,51 which allows
us enough flexibility for the argument to work, at least when iterating finitely many steps.52

Exercise 17.4. Verify that G0 ∗ Ġ1 is indeed an automorphism group of Q0 ∗ Q̇1 and show that
⟨π1, σ̇1⟩ ◦ ⟨π0, σ̇0⟩ = ⟨π1π0, π

−1
0 (σ̇1)σ̇0⟩ and ⟨π, σ̇⟩−1 = ⟨π−1, π(σ̇−1)⟩.

Exercise 17.5. Assume that ⟨Q1,G1,F1⟩ is in the ground model, show that G0 ∗ Ǧ1 ∼= G0 × G1.

Exercise 17.6. Suppose that G0 witnesses the homogeneity of Q0 and 1 ⊩Q0 “Ġ1 witnesses the
homogeneity of Q̇1”, then G0 ∗ Ġ1 witnesses the homogeneity of Q0 ∗ Q̇1.

This definition extends naturally to the general case, by simply iterating the construction
and taking a suitable notion of a limit relative to the limit steps of the iteration. This may
require us to be slightly careful in how we define this, but we will not deal with the general
iteration case (even the finite support one) so we can just move on. The next step, of course, is
to identify a filter on G0 ∗ Ġ1.

In the case of simply two steps, we can significantly simplify much of the problem.

Definition 17.18. We write F0 ∗ Ḟ1 to denote the filter generated by subgroups of the form
H0 ∗ Ḣ1 where H0 ∈ F0, 1 ⊩HS

Q0 Ḣ1 ∈ Ḟ1, and H0 respects Ḣ1.

The same “trick” that we have used for the automorphisms will work here as well to guarantee
“enough” names are in HS which are guaranteed to be in Ḟ1.

Proposition 17.19. F0 ∗ Ḟ1 is a normal filter of subgroups.

Proof. Let ⟨π, σ̇⟩ ∈ G0 ∗ Ġ1 and let ⟨τ, φ̇⟩ ∈ H0 ∗ Ḣ1. We can compute that

⟨π, σ̇⟩ ◦ ⟨τ, φ̇⟩ ◦ ⟨π, σ̇⟩−1 = ⟨πτπ−1, π((τ−1σ̇)φ̇σ̇−1)⟩.

In particular, if τ respects σ̇, then we can replace τ−1σ̇ by σ̇ and obtain that the conjugation is
⟨πτπ−1, π(σ̇φ̇σ̇−1)⟩. In particular, in that case, the conjugation is πH0π

−1 ∗ π(σ̇Ḣ1σ̇
−1).

But since τ̇ ∈ HS we can simply shrink H0 to H ′
0 = H0 ∩ sym(σ̇), which means that the

conjugation contains the group πH ′
0π

−1 ∗ π(σ̇Ḣ1σ̇
−1), as wanted.

Theorem 17.20. Let G0 ∗ G1 be V -generic for Q0 ∗ Q̇1, then HSG0∗G1
F0∗Ḟ1

is the same model as
the symmetric extension of HSG0

F0
by ⟨Q̇G0

1 , Ġ G0
1 , Ḟ G0

1 ⟩, using G1 as the generic filter.

51And if it is not tenacious we can simply take σ̇ on the orbit of p under sym(σ̇).
52And with some work, also finite support iterations in general.
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