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Prologue

What are large cardinals? Well, the concept is not a mathematical one, and we can even prove
that. But for the most part, these are axioms that we can add to the standard axioms of set
theory (ZFC or ZF for the most part) and study their impact.

One of the general understanding is that large cardinal axioms will prove the consistency of
set theory in a strong sense: not only that models can be produced, transitive set-sized models
can be produced. For the most part, we get that if κ is the least large cardinal of type X, then
in Vκ there will be a proper class, or at the very least one, large cardinals of type Y .1

Many of the properties we study begin by looking at ω and asking “what happens if we
add uncountable to this property?”, as such these axioms are often called “strong axioms of
infinity”, as they can be seen as a natural strengthening of the Axiom of Infinity, positing the
existence of an uncountable cardinal.

So, what are these large cardinal axioms good for? We use them to study how strong a
mathematical statement might be. For example, “every projective set is Lebesgue measurable”
is equiconsistent with “there exists an inaccessible cardinal”, and “there is no Aronsazjn tree
on ω2 and ω3 at the same time” follows from the existence of a supercompact cardinal and a
weakly compact cardinal above it, and it implies the consistency of a Woodin cardinal.

We will, in the following few weeks, climb up the hierarchy of large cardinal axioms, from
the small to the large, to the huge. This prologue will evolve and change by the end of the
course to reflect more accurately the content of these notes.

1Some counterexamples, of course, are inevitable, and not just contrived ones. 0# does not imply the existence
of an inaccessible cardinal, but it implies a proper class of inaccessible cardinals exists in L; the least huge cardinal
is below the least supercompact, but it implies the consistency of many supercompact cardinals.
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Chapter 1

Accessing the inaccessible

1.1 The inaccessible world

Definition 1.1. We say that κ is a strong limit cardinal if whenever α < κ, 2α < κ.

Definition 1.2. We say that κ is an inaccessible cardinal if it is a regular strong limit cardinal.

Exercise 1.3. The following are equivalent:

1. κ is inaccessible.

2. κ is a limit cardinal and κ<κ = κ.

Exercise 1.4. Prove that κ = 2<κ does not imply inaccessibility even in conjunction with any one
of these property:

1. κ is a limit cardinal.

2. κ is regular.

Exercise 1.5. ω is an inaccessible cardinal.

From this point onwards, we will always assume that an inaccessible cardinal is uncountable.

Theorem 1.6. The following are equivalent:

1. κ is inaccessible.

2. For every x ∈ Vκ, if f : x → κ, then sup rng f < κ.

3. For every α < κ, if f : 2α → κ, then sup rng f < κ.

Proof. (2) → (3): Trivial.
(3) → (1): To see that κ is regular, note that otherwise there is some α < κ and f : α → κ

with sup rng f = κ, this f extends trivially to 2α. If κ is not a strong limit, let α be the least
such that κ ≤ 2α, then there is an injection from κ into 2α, which can be reversed and therefore
there is f : 2α → κ which is onto, so sup rng f = κ.

(1) → (2): It is enough to check that for x = Vα for some α < κ, since if x ∈ Vκ there is
some α < κ such that x ∈ Vα. For this it is enough to show that if α < κ, |Vα| < κ, since κ is
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a regular cardinal. We prove this by induction on α, suppose that this holds for all β < α. If
α = β + 1, then |Vβ| = λ < κ, so |Vα| = |Vβ+1| = |P(Vβ)| = 2λ < κ. If α is a limit, then for all
β < α, |Vβ| = λβ < κ, and sine α < κ, |Vα| = |

⋃
{Vβ | β < α}| = sup{λβ | β < α} < κ.

Exercise 1.7. If κ is inaccessible, then κ = ℵκ = ℶκ.

Theorem 1.8. If κ is inaccessible, then Vκ |= ZFC.

Proof. Since Vκ is transitive it satisfies the axioms of Extensionality and Foundation. Since κ
is uncountable, Infinity holds as well. Since κ is a limit ordinal, Power Set, Union, and Choice
hold. Finally, let x ∈ Vκ and φ such that Vκ |= φ(u, v) defines a function on x. Defining
f(u) = rank(v), such that φ(u, v) holds, is a function from x to κ, so by (2) in Theorem 1.6 it
must be bounded, so {v | ∃u ∈ xφ(u, v)} ∈ Vκ.

The proof actually shows that Vκ |= ZFC2, where Replacement is a single second-order
axiom.

Exercise 1.9. If Vκ |= ZFC2, then κ is inaccessible.

If we want to keep going on and grow larger and stronger, then, perhaps the first natural
step would be this.

Definition 1.10. A cardinal κ is 2-inaccessible if it is an inaccessible cardinal which is the limit
of inaccessible cardinals. More generally, for α > 0, κ is α-inaccessible if it is inaccessible and
the set of β-inaccessible cardinals below it is unbounded in κ for all β < α.

Remark. The above condition just ignores 0-inaccessible cardinals, and we will often just define
those to be the regular cardinals, or the strong limit cardinals, in whatever way suits our needs.

Exercise 1.11. Suppose that κ is 2-inaccessible, then in Vκ there is a proper class of inaccessible
cardinals.

However, this is not a particularly satisfying way of increasing the strength of our large
cardinal axioms, it is overly tedious and technical, and we want a stronger axiom to be more
than just “the limit of weaker cardinals”, but indeed to embody that limit in a strong sense.
For this, let us look downwards for a moment.

Theorem 1.12. Let R ⊆ Vκ, then there is α < κ such that ⟨Vα,∈, R ∩ Vα⟩ ≺ ⟨Vκ,∈, R⟩.

Proof. We define by recursion a sequence, α0 = 0, and let M0 be the elementary substruc-
ture generated by Vα0 . Let αn+1 = rank(M0), and let Mn+1 be the elementary substructure
generated by Vαn . We let α = supαn, then Vα =

⋃
Vαn =

⋃
Mn, and therefore Vα ≺ Vκ.

Remark. We can ask why fail for Vω1 , for example. The reason is that if Vκ ̸|= ZFC, then there
is a formula φ(u, v) and x ∈ Vκ such that Vκ |= (∀u ∈ x)∃!vφ(u, v)∧∀y∃v(v /∈ y∧(∃u ∈ x)φ(u, v).
This means that any elementary submodel of Vκ will invariably have rank κ (since the existence
of such an x is expressible in first-order logic).

We will say that α is a reflection point of R if ⟨Vα,∈, R ∩ Vα⟩ ≺ ⟨Vκ,∈, R⟩.

Exercise 1.13. Let κ be an inaccessible cardinal. Show that for any R ⊆ Vκ, the set of reflection
points of R is a club in κ.

Corollary 1.14. If κ is inaccessible, then there is some α < κ such that Vα |= ZFC. In
particular, if α is the least such that Vα |= ZFC, then α is singular.
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Proof. The first part is trivial, for the second part, if α is inaccessible, then it is not the least
cardinal for which ZFC holds in Vα. Therefore, it is either singular or not a strong limit.
However, if α is not a strong limit, then there is some β < α such that |P(β)| ≥ α, and in
that case Vα does not satisfy “Every well-ordered set is bijective with an ordinal”, which is a
theorem of ZF.

Definition 1.15. We say that κ is a worldly cardinal if Vα |= ZFC.

Exercise 1.16. If κ is a worldly cardinal and cf(κ) > ω, then Vκ |=“There is a proper class of worldly
cardinals”. Consequently, the ω1th worldly cardinal has cofinality ω.

Exercise 1.17. If α < β and Vα ≺ Vβ, then α is a worldly cardinal that is the limit of worldly
cardinals.

Theorem 1.18. Suppose that κ is a cardinal such that whenever R ⊆ Vκ, R reflects at some
α < κ, then κ is an inaccessible cardinal.

Proof. We use (2) from Theorem 1.6. Suppose that x ∈ Vκ and f : x → κ, then f ⊆ Vκ, so
there is some α such that ⟨Vα,∈, f ∩ Vα⟩ ≺ ⟨Vκ,∈, f⟩. Since ⟨Vκ,∈, f⟩ |= “ dom f is a set”, this
holds at the reflection point. Let x′ ∈ Vα be dom f ∩ Vα, then by elementarity it must be that
Vκ |= x′ = dom f , and therefore x = x′. Therefore f ∩ Vα = f , so sup rng f < α < κ.

From this we can first of all define a hierarchy of worldly cardinals by judging at what point
they reveal to be singular. Namely, how simple of a set R can we find such that ⟨Vκ,∈, R⟩ does
not reflect? But we can also create strong and strong extensions of inaccessibility, by requiring
not only that we are the limit of inaccessible cardinals, but also that we reflect at inaccessible
cardinals.

1.2 And yet it does not move

Definition 1.19. We say that κ is a Mahlo cardinal if it is a strong limit cardinal such that
{α < κ | α = cf(α)} is a stationary set.2

Proposition 1.20. If κ is Mahlo, then κ is regular.

Proof. Suppose that κ is singular, let A ⊆ κ be a club of minimal order type with minA > cf(κ),
then acc(A) is also a club of minimal order type, and every λ ∈ acc(A) is singular, as it is the
limit of a sequence shorter than cf(κ). Therefore acc(A) ∩ {α < κ | α = cf(α)} = ∅.

Theorem 1.21. For a strong limit cardinal, κ, the follow are equivalent:

1. κ is Mahlo.

2. {α < κ | α is inaccessible} is stationary.

3. For every R ⊆ Vκ, there is an inaccessible reflection point of R.

4. For every R ⊆ Vκ, there is a regular reflection point of R.
2Implicit in this is that the cofinality of κ is uncountable.
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Proof. (1) → (2): C = {α < κ | α is a strong limit cardinal} is a club, and therefore

C ∩ {α < κ | α = cf(α)} = {α < κ | α is inaccessible}

is stationary in κ.
(2) → (3): Since κ is inaccessible, given any R ⊆ Vκ, there is a club of reflection points of

R, so there is an inaccessible cardinal reflecting R.
(3) → (4): Trivial.
(4) → (1): Let C be a club, then there is some regular α which reflects C, but since C is

unbounded in κ, C ∩ Vα = C ∩α is unbounded in α. Since C is closed, α ∈ C. Therefore, there
is a regular cardinal in every club, so {α < κ | α = cf(α)} is stationary, so κ is Mahlo.

Exercise 1.22. If κ is a Mahlo cardinal, then κ is κ-inaccessible. (Hint: accα(I), where I is the set
of inaccessible cardinals is a club.)

Exercise 1.23. If κ is the least such that κ is κ-inaccessible, then κ is not Mahlo.

This allows us to define the iterated Mahlo-hierarchy.

Definition 1.24. We say that a strong limit cardinal κ is an α-Mahlo cardinal if

{ξ < κ | ξ is a β-Mahlo cardinal}

is stationary in κ for all β < α. If κ is κ-Mahlo say that it is a hyper-Mahlo.

So, κ is a 0-Mahlo cardinal if it is inaccessible. Next, 1-Mahlo implies the set of inaccessible
cardinals is stationary, and 2-Mahlo cardinals are those where the accumulation points of this
set reflect at a regular cardinal. So, α-Mahlo is one where every R ⊆ Vκ reflects at a cardinal
whose Mahlo-ness is as close to α as we want it to be. How can we go beyond a hyper-Mahlo,
then?

The easy solution is to apply diagonal intersections to the stationary sets. While the diagonal
intersection of κ-many clubs is still a club, there is no guarantees for stationary sets. If, however,
we are lucky enough, the result may still be stationary. Moreover, up to a non-stationary set
this diagonal intersection will be unique.3

We can formalise this using the Mahlo operation which is

M(X) = {α < κ | α ∩X is stationary in α}.4

It is not hard to check that if X ≡NS Y , then M(X) ≡NS M(Y ). We can therefore iterate M
to define Mα(X), but this can be extended beyond κ itself by using diagonal intersections.5

And so, a strong limit cardinal, κ, is α-Mahlo if Mβ({λ < κ | λ = cf(λ)}) is stationary for
all β < α, and it is greatly Mahlo if it is κ+-Mahlo.

Exercise 1.25. κ is greatly Mahlo if and only if there exists a normal κ-complete filter on P(κ)
concentrating on the set of regular cardinals and closed under the Mahlo operation.

3Recall that the diagonal intersection is the magical infimum in P(κ)/NSκ.
4Again, implicit here is that these ordinals are all of uncountable cofinality.
5This is why it is important that the Mahlo operation is invariant up to a non-stationary set.
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1.3 “Weakly” large cardinal axioms

Sometimes we want to dispense with the strong limit notions. We can certainly ask about
regular limit cardinals, which may or may not be strong limit cardinals. Similarly, we can
certainly ask that {α < κ | α = cf(α)} is stationary without the strong limit requirement.

This leads us to two common large cardinal notions.

Definition 1.26. We say that κ is a weakly inaccessible cardinal if it is a regular limit cardinal.
We say that κ is a weakly Mahlo cardinal if it {α < κ | α = cf(α)} is stationary in κ. Both of
these extend to weak α-inaccessible and weakly α-Mahlo.

Theorem 1.27. If κ is weakly inaccessible, then κ is inaccessible in L. Therefore the consis-
tency strength of weak and strong inaccessible cardinals is the same.

Proof. Being a regular limit cardinal is a Π1 formula, and so it is downwards absolute. Since
L |= GCH, it means that κ is a strong limit as well.

Theorem 1.28. If κ is weakly Mahlo, then κ is Mahlo in L. Therefore the consistency strength
of weak and strong Mahlo-ness is the same.

Proof. Let S = {α < κ | α = cf(α)}L, since every regular cardinal in V is regular in L,
{α < κ | α = cf(α)} ⊆ S, and therefore S is stationary in V . Given any C ∈ L which is a club
in κ, C is a club in V , so C ∩ S is non-empty, and therefore L |= S is stationary, so in L we
have that κ is weakly Mahlo, as GCH holds, κ is Mahlo.

1.4 Inaccessibility for reals

Definition 1.29. We say that ω1 is inaccessible to reals if ωL[x]
1 < ω1 for all x ⊆ ω.

Exercise 1.30. If ω1 is inaccessible to reals, then L |= ωV
1 is a limit cardinal. Consequently, if ω1 is

regular, it is inaccessible in L.

Definition 1.31. We say that X ⊆ R has the Perfect Set Property if it is either countable or
contains a closed copy of the Cantor set.

Specker had shown that in ZF, “Every set of reals has the Perfect Set Property” implies
that ω1 is inaccessible to reals. In particular, if ZF + DC holds, it must be the case that ω1
is inaccessible in L. Solovay had later shown that given an inaccessible cardinal, we can use
forcing and symmetric extensions to construct a model in which ZF + DC holds and every set
of reals has the Perfect Set Property. Truss showed that starting with a singular cardinal will
also produce a model where every set of reals has the Perfect Set Property, although in that
model, DC must fail as ω1 must be singular.
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Chapter 2

Weak compactness and other things
we cannot describe

2.1 Compactness

Definition 2.1. Lκ,λ is the logic obtained by closing first-order logic under fewer than κ dis-
junctions and quantifying, in a single block, over fewer than λ free variables.6

We say that Lκ,λ is weakly compact if whenever T is an Lκ,λ-theory in a language whose
size is ≤ κ, and every T0 ∈ [T ]<κ has a model, then T has a model.7 We also say in this case
that T is a κ-satisfiable theory.

Exercise 2.2 (*) . 1. If κ is inaccessible and φ is a satisfiable sentence in Lκ,κ, then it has a
model of size < κ.

2. If T is a satisfiable theory of size ≤ κ, then it has a model of size ≤ κ.

Note that for an inaccessible cardinal κ and an Lκ,κ theory, T , of size at most κ, we can
code the Tarskian semantics for T in Vκ in a definable way, and we will make heavy implicit
use of this fact throughout the following proofs.

Definition 2.3. We say that κ is a weakly compact cardinal if Lκ,κ is weakly compact.

This is a generalisation of ω, since Lω,ω is just the usual first-order logic and Gödel’s com-
pactness theorem tells us that ω is weakly compact.8 So we will assume that in addition to the
weak compactness κ is uncountable.

Theorem 2.4. If κ is weakly compact, then κ is inaccessible.

This is a significant jump from the previous examples we have seen, where the notions of
inaccessible and Mahlo cardinals have “weakly” version to them. Weak compactness is already
strong enough so that it proves inaccessibility.

6First-order logic often assumes only countably many free variable symbols, of course we allow as many as
needed.

7The weakness is the size of the language, and we will discuss the unrestricted version later on when we discuss
strongly compact cardinals.

8And in fact, it tells us much more.
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Proof. If κ is singular, take any small unbounded X ⊆ κ and let {cα | α < κ} ∪ {c} be constant
symbols. Consider the theory

T = {c ̸= cα | α < κ} ∪

 ∨
α∈X

∨
β<α

c = cβ

 .

The theory is κ-satisfiable, since every T0 ∈ [T ]<κ can only mention a small number of constants,
which we can then interpret as some initial segment of κ. But clearly, the theory does not have
a model. So, κ must be regular.

To see that κ is a strong limit cardinal, for any α < κ and consider the language with
constant symbols {cγ | γ < α} ∪ {di

γ | γ < α, i < 2}. Let T be the theory ∧
γ<α

(cγ = d0
γ ∨ cγ = d1

γ ∧ d0
γ ̸= d1

γ)

 ∪

 ∨
γ<α

cγ ̸= dg(γ)
γ

∣∣∣∣∣∣ g : α → 2

 .

The theory cannot have a model, since the interpretation of the cγ defines c : α → 2 which is
not in 2α. However, if 2α ≥ κ, then the theory is κ-satisfiable, as for any fewer than κ sentences
we can find f which is not mentioned in any of them and define the cγ according to f . So, κ
must be a strong limit as well.

Remark. If we only require that |T | ≤ κ in the definition of weak compactness, the above
proof only shows that there is not α < κ such that 2α = κ.

Definition 2.5. Let κ be an infinite cardinal, we say that a tree T is a κ-tree if it has height
κ and every level has size < κ. We say that b ⊆ T is a branch if it is a maximal chain which
has elements in every level of the tree.9 We say that κ has the tree property if every κ-tree has
a branch.

It T is a κ-tree without a branch we call it a κ-Aronszajn tree, and we omit κ in the case of
ω1. The tree property, therefore, says that there are no κ-Aronszajn trees.

Proposition 2.6. ω has the tree property.

Proof. Let T be an ω-tree, then T is countable, write it as {tn | n < ω} and without loss of
generality if t < t′, then the index of t is before the index of t′. Define a branch by recursion:
b0 = t0 is the root of T ; if bn was chosen, let bn+1 be tm where m is minimal such that
{t ∈ T | tm < t} is infinite. Since each level is finite and T is infinite, there must be such m.

Exercise 2.7. If κ is singular, then κ does not have the tree property.

Exercise 2.8 (**) . Suppose that κ<κ = κ, then κ+ does not have the tree property. In particular,
ω1 does not have the tree property.

Definition 2.9. Let M be an algebra of subsets of X, that is a collection of subsets of X closed
under finite intersections and complements. We say that F is an M -filter if for every A,B ∈ M ,
if A ⊆ B and A ∈ F , B ∈ F ; if A,B ∈ F , then A ∩ B ∈ F ; and ∅ /∈ F . We say F is an
M -ultrafilter if for every A ∈ M , A ∈ F or X \ A ∈ F . Finally, we say that F is κ-complete if
for every α < κ and {Mξ | ξ < α} ⊆ F ,

⋂
ξ<αMξ ∈ F .

Often we care not about the algebra itself, but rather some structure, M , and the algebra
M ∩ P(X). In that case we will write M -ultrafilter to mean (M ∩ P(X))-ultrafilter.

9Often this would be called a cofinal branch instead.
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Definition 2.10. We say that κ has the weak filter property if whenever M ⊆ P(κ) is an
algebra of sets of size κ, then there is a κ-complete free M -ultrafilter.

Exercise 2.11 (*) . If κ has the weak filter property, then κ is inaccessible.

Definition 2.12. We say that κ has the extension property if for every A ⊆ Vκ, there is a
transitive set M and some B ⊆ M such that ⟨Vκ,∈, A⟩ ≺ ⟨M,∈, B⟩.

Exercise 2.13. If κ has the extension property, then κ is inaccessible.

Definition 2.14. Let M be a transitive set and let j : M → N be an elementary embedding.
The critical point of j is the least ordinal α such that α < j(α), we denote this ordinal by
crit(j). If there is no critical point, we say that j is trivial.

Exercise 2.15. Suppose that M is a transitive model of ZFC and j : M → N is trivial, then j is
the identity.

Definition 2.16. We say that κ is a weakly critical cardinal if for every A ⊆ Vκ there are
transitive sets M and N such that A, κ, Vκ ∈ M ∩N , and an elementary embedding j : M → N
with critical point κ.

Proposition 2.17. If κ is a weakly critical cardinal, then κ is inaccessible.

Proof. If κ is not inaccessible, let f : x → κ be a function for some x ∈ Vκ. Considering f as a
subset of Vκ, let M be a transitive set such that f, κ, Vκ ∈ M and j : M → N be an elementary
embedding with critical point κ. Then j(f) : j(x) → j(κ), but since j ↾ x ∪ {x} = id, f = j(f).
So N |= sup rng j(f) < j(κ), so M |= sup rng f < κ, so κ is inaccessible.

Theorem 2.18. Let κ be an uncountable cardinal, then the following are equivalent:

1. κ is weakly compact.

2. κ is inaccessible and has the tree property.

3. κ has the weak filter property.

4. κ has the extension property.

5. κ is weakly critical.

Proof. (1) → (2): By Theorem 2.4 we know that κ is inaccessible. Let T be a κ-tree, and
consider the language {Pt | t ∈ T} of 0-ary predicate symbols. Consider the theory ∨

t∈Tα

Pt

∣∣∣∣∣∣ α < κ

 ∪ {¬Pt ∧ Ps | t ⊥ s}.

The theory is κ-consistent, since any small collection has a model in some T ↾ α. Let M be a
model of the theory, then {t | M |= Pt} is a branch in T .

(2) → (3): Suppose that κ is inaccessible and has the tree property and let M ⊆ P(κ) be
an algebra of sets of size κ, so we can write it as {Aα | α < κ}. We may also assume that M
contains all the finite subsets of κ. For α < κ and s ∈ 2α we define

As =
⋂

{Aξ | s(ξ) = 1} ∪
⋂

{κ \Aξ | s(ξ) = 0}.
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Let T = {s ∈ 2<κ | |As| = κ}, ordered by extension. Note that for each α < κ, and for each
γ < κ, we can find s ∈ 2α such that γ ∈ As, and therefore

⋃
{As | s ∈ 2α} = κ. As κ is regular

and 2α < κ, there must be at least one s ∈ Tα, so T is indeed a κ-tree.
By the tree property, there is a branch B ⊆ T , so letting F = {A ∈ M | ∃s ∈ B,As ⊆ A},

then it is easy to see that F is a κ-complete M -ultrafilter, and it is non-principal since for all
β < κ, if {β} = Aα, then it must be that s(α) = 0 for any s ∈ B of sufficient height, otherwise
the intersection is small.

(3) → (5): Let A ⊆ Vκ and let M ≺ H(κ+) be an elementary submodel such that |M | =
κ, A, κ, Vκ ∈ M , and M<κ ⊆ M . Note that we can find such M since κ is inaccessible,
moreover, since κ ∈ M we get that M is transitive. The algebra P(κ) ∩ M has size κ, so
there is a κ-complete M -ultrafilter, U . Consider the definable ultrapower, Mκ/U , where we
only consider f : κ → M which is definable in M . It follows that if f, g are two such functions,
{α < κ | f(α) = g(α)} and {α < κ | f(α) ∈ g(α)} are both definable as well, and so in M .
Therefore we get a Łoś’s theorem for this ultrapower. Moreover, by κ-completeness we this
ultrapower is well-founded and it has critical point κ. If it was not well-founded, we would
have a sequence {[fn] | n < ω} such that An = {α < κ | fn+1(α) ∈ fn(α)} ∈ U , and so by
κ-completeness,

⋂
An ∈ U and therefore non-empty. This would mean that there is some α

such that {fn(α) | n < ω} is a descending ∈-sequence in M which is transitive.
So we can apply the transitive collapse to the ultrapower and let N be the resulting model

and j(x) = π([cx]), where cx is the constant function returning x and π is the transitive collapse.
By κ-completeness, if α < κ, j(α) = α. In particular, crit(j) ≥ κ, and it is not hard to verify
that since U is non-principal, j(κ) > κ.

(5) → (4): Suppose that A ⊆ Vκ and let j : M → N be transitive sets and an elementary
embedding witnessing that κ is weakly critical. Then N |= “j(Vκ) is transitive”, and therefore it
is in fact transitive, and since crit(j) = κ, we have that Vκ ⊊ j(Vκ). Moreover, letting j(A) = B,
we immediately get that ⟨Vκ,∈, A⟩ ≺ ⟨j(Vκ),∈, B⟩ as wanted.

(4) → (1): Let T be a κ-satisfiable theory of size κ, we may assume if T0 ∈ [T ]<κ, then T0
has a model in Vκ. Let ⟨Vκ,∈, T ⟩ ≺ ⟨M,∈, T ′⟩, then Vκ satisfies that every “small” subset of T
has a model, and therefore M satisfies the same. But since T ′ ∩Vκ = T is small, from the point
of view of M , T has a model.

Remark. The embedding properties can be modified, extended, and refined to require all kind
of properties from M or N or the embedding itself. In some of these cases, however, we will
need to require explicitly that κ is inaccessible, or at the very least that κ<κ = κ.

Theorem 2.19. If κ is weakly compact, then κ is Mahlo.

Proof. Suppose that κ is weakly compact, let C ⊆ κ be a club, and let ⟨Vκ,∈, C⟩ ≺ ⟨M,∈, C ′⟩,
then M |= κ ∈ C ′, and therefore in M it holds that “there is a regular cardinal in C ′”, so in Vκ

it must be that there is a regular cardinal in C.

Exercise 2.20. If κ is weakly compact, then κ is greatly Mahlo.

Exercise 2.21. If κ is weakly compact, and S ⊆ κ is a stationary set, then there is some α < κ
such that S ∩ α is stationary in α.
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One natural question is “how deep does weak compactness go”?

Lemma 2.22. Let κ be a weakly compact cardinal, A ⊆ Vκ and suppose that for all α < κ,
A ∩ Vα ∈ L. Then A ∈ L. Consequently, if Vκ |= V = L, then Vκ+1 = (Vκ+1)L.

Proof. Let ⟨Vκ,∈, A⟩ ≺ ⟨M,∈, B⟩, then Vκ satisfies that for all α there is some β such that
A∩ Vα ∈ Lβ. Therefore M satisfies the same, so there is some β such that B ∩ Vκ ∈ Lβ, and so
A ∈ Lβ. If Vκ |= V = L, then this holds for all A ∈ Vκ+1, and the conclusion follows.

Theorem 2.23. Suppose that κ is weakly compact, then L |= κ is weakly compact.

Proof. Let T ⊆ Lκ be such that L |= “T is a κ-tree”. Then T is a κ-tree in V , since κ is a
cardinal in V . If b ∈ V is a branch, then b ↾ α ∈ L for all α < κ, since for successor nodes
b ↾ α + 1 is fully determined by the maximal node. By Lemma 2.22, b ∈ L as well. Since κ is
inaccessible, it is inaccessible in L, and so L satisfies that κ is weakly compact.

Remark. Unlike inaccessibility and Mahlo-ness, it is possible for κ to be weakly compact in
V , but not weakly compact in an inner model M . The above proof shows, however, that for
M = L this is not the case, and we can extend this proof to models that are sufficiently robust.
Remark. It is consistent that ω2 has the tree property (in which case 2ℵ0 ≥ ℵ2). But we can
show that if κ has the tree property, then κ is weakly compact in L.

2.1.1 Colourful characterisations of weak compactness

Definition 2.24. We write κ → (λ)n
m to mean “For every c : [κ]n → m there is H ∈ [κ]λ such

that c ↾ [H]n is constant.” If m = 2, we omit it from the notation and write κ → (λ)n.

We will refer to such c as a “colouring” and will often think of c as a symmetric function on
tuples of ordinals, and we say that H as in the conclusion is a “homogeneous set”, often for a
given colour.

Exercise 2.25. ω → (ω)2.

Exercise 2.26. If κ → (λ)2, then κ′ → (λ′)2 whenever κ′ ≥ κ and λ′ ≤ λ.

Exercise 2.27 (**) . For any κ, κ ̸→ (ω)ω.

Exercise 2.28 (**) . Let κ be an infinite cardinal, then 2κ ̸→ (κ+).

Proposition 2.29. If κ > ω and κ → (κ)2, then κ is inaccessible.

Proof. Suppose that κ is singular, then we can partition it into {Xξ | ξ < cf(κ)} where |Xξ| < κ
for all ξ. The colouring c(α, β) = 0 if and only if α, β belong to the same Xξ, and otherwise
c(α, β) = 1. Clearly, every homogeneous set of value 0 has size < κ, and any homogeneous set
with value 1 must have size ≤ cf(κ).

If λ < κ and 2λ ≥ κ, then by the above exercises 2λ → (λ+)2, which is impossible.

Proposition 2.30. Suppose that ⟨P,<⟩ is a linear order of size κ and κ → (κ)2, then there is
some X ⊆ P such that ⟨X,<⟩ ∼= κ or ⟨X,>⟩ ∼= κ.

Proof. Write P as {pα | α < κ}, then define c on [κ]2 by c(α, β) = 0 if and only if α < β and
pα < pβ. A homogeneousH ∈ [κ]κ defines an embedding of κ into P , or a reverse embedding.
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Proposition 2.31. Suppose that κ is an inaccessible cardinal such that any linear order of size
κ has an embedding or a reverse embedding from κ. Then κ has the tree property.

Proof. Let ⟨T,<⟩ be a κ-tree, and let ≺ be an extension of the order on T into a linear ordering.
We may assume that the linear ordering satisfies that that if x ≺ y ≺ z and w < x and w < z,
then w < y. Namely, T x = {t ∈ T | x < t} is a convex set for all x ∈ T . For example, we can do
this by embedding T into κ<κ through choosing a well-ordering of each level, then considering
κ<κ as a linear ordering in the lexicographic order. Let C ⊆ T be such that otp(C,≺) = κ, we
will deal with the case where the order type is the reverse order later.

Let D = {x ∈ T | ∃y ∈ C, ∀z ∈ C, y ≺ z → x < z}. Namely, we use the tail-segments filter
on C to measure points in the tree, so a node in T gets into D when its successors contain a
tail-segment of C. We first claim that D is non-empty, since the root of T must satisfy this
property. Next, we claim that D is a chain in T . If x, x′ ∈ D, then there are y, y′ ∈ C witnessing
that, and without loss of generality y′ ≺ y, then there is some z such that y′ ≺ y ≺ z, and
therefore z must be a <-successor of both x and x′, and therefore x and x′ are comparable, so
D is a chain.

Let us show that D is cofinal. If x ∈ D, then the set of successors of x in T which have
rank α, for some α < κ, has fewer than κ members. Since the tail segments of C have size κ,
it must be that one of the elements of rank α satisfies the property and is in D. Therefore, D
is a branch, as wanted.

If C was ordered in the reverse well-ordering, define D using initial segments instead.

Corollary 2.32. If κ → (κ)2, then κ is weakly compact.

2.2 Indescribably large cardinals

Definition 2.33. Let L be a first-order language. We say that φ is a Σn
m-formula (Πn

m-formula)
if it has m alternating blocks of n+ 1-order variables starting with existential (universal) quan-
tifiers, and a formula which does not have any n+ k-order quantifiers for k > 0.

We use full semantics for higher-order quantifiers. Namely, we interpret the quantifiers as
ranging over Pn(M), where M is the structure.

Definition 2.34. Let Q be a class of sentences of the form Πn
m or Σn

m, where n,m < ω. We
say that κ is Q-indescribable if for all R ⊆ Vκ and φ ∈ Q, if ⟨Vκ,∈, R⟩ |= φ, then there is α < κ
such that ⟨Vα,∈, R ∩ Vα⟩ |= φ.

Note that this is equivalent to ⟨Vκ+n,∈, R⟩ |= φ where φ is treated now as a first-order
sentence.

Proposition 2.35. For any n < ω, κ is Σ1
n+1-indescribable if and only if it is Π1

n-indescribable.

Proof. Every Π1
n formula is also Σ1

n+1, so it is enough to verify that Π1
n-indescribability implies

Σ1
n+1-indescribability. If ⟨Vκ,∈, R⟩ |= ∃Xφ(X) where φ is a Π1

n-sentence in X, then there is
some S ⊆ Vκ such that ⟨Vκ,∈, R, S⟩ |= φ[S], where we replace all the free occurrences of X by
the predicate S.

By Π1
n-indescribability, there is some α < κ such that ⟨Vκ,∈, R ∩ Vα, S ∩ Vα⟩ |= φ[S ∩ Vα],

and therefore ⟨Vα,∈, R ∩ Vα⟩ |= ∃Xφ(X) as wanted.
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We saw that inaccessible cardinals reflect any first-order sentence, so κ is inaccessible if and
only if it is Π1

0-indescribable, or equivalently, Σ1
1-indescribable.

Theorem 2.36. κ is weakly compact if and only if it is Π1
1-indescribable.

Proof. Suppose that κ is weakly compact, let R ⊆ Vκ and let ∀Xφ(X) be a Π1
1-sentence such

that ⟨Vκ,∈, R⟩ |= ∀Xφ(X), then we can take an elementary end-extension ⟨M,∈, R′⟩, which we
can assume has size κ. Since it holds that for every X ⊆ Vκ, ⟨Vκ,∈, R⟩ |= φ(X), it is certainly
true that M |= (∀X ⊆ Vκ), ⟨Vκ,∈, R⟩ |= φ(X). Therefore, in M it is true that there is some α
such that ⟨Vα,∈, R′ ∩ Vα⟩ |= ∀Xφ(X). By elementarity, this holds in Vκ as wanted.

In the other direction, suppose that κ is Π1
1-indescribable, then it is inaccessible. Let T be

a κ-tree, then we may assume T ⊆ κ<κ. Then for all α < κ,

⟨Vα,∈, T ∩ Vα⟩ |= ∃B(B is a branch in T ∩ Vα),

as there are nodes which are arbitrarily high below α. Since κ is Π1
1-indescribable, it must also

satisfy this Σ1
1-sentence, otherwise its negation will reflection, so T has a branch.

Exercise 2.37 (***) . Find a characterisation of Mahlo cardinals and α-Mahlo cardinals in terms
of expanded indescribability. (That is, find a refinement of Π1

1-indescribability that is stronger than
Σ1

1-indescribability, which captures exactly Mahlo cardinals.)

Exercise 2.38 (**) . Suppose that κ is Πn
m-indescribable. Then {α | α is Q-indescribable} is

stationary in κ, where Q = Πn−1
k for any k when n > m = 0 and Q = Πn

m−1 if m > 0.

Remark. By repeating a proof similar to Theorem 2.23, using the fact that under GCH, H(κ+n)
and Vκ+n are bi-interpretable, we can then use the fact that in L, Lκ = Vκ, to encode V L

κ+n to
H(κ+n)L = Lκ+n .

Definition 2.39. We say that κ is a totally indescribable cardinal if it is Πn
m-indescribable for

all n,m < ω.

Theorem 2.40. Suppose that M is a transitive model of ZFC and j : M → M is a non-trivial
elementary embedding, then crit(j) is totally indescribable.

Proof. Let κ = crit(j), let R ⊆ Vκ in M , and suppose that ⟨Vκ,∈, R⟩ |= φ for some φ ∈ Πn
m.

By elementarity, ⟨j(Vκ),∈, j(R)⟩ |= φ. As we can replace this by the first-order structure
⟨Vκ+n,∈, R⟩, we have that ⟨Vj(κ)+n,∈, j(R)⟩ |= φ. However, since j : M → M , it follows that
M |= ∃α < j(κ), “⟨Vα+n,∈, j(R)∩Vα⟩ |= φ′′, since κ < j(κ) witnesses that. So, by elementarity,
this holds below κ, so κ is Πn

m-indescribable for all n,m < ω.

Remark. Note that an elementary embedding j : M → M is in a sense “quite large”, and we
will see that such j cannot be definable in M , although surprisingly the consistency strength of
this is not as large as one would initially expect. We will discuss this more in the future. We
will also discuss variations of this arguments which will be compatible with internally definable
embeddings.
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Chapter 3

Critical measuring

3.1 Measurable cardinals

Definition 3.1. We say that κ is a measurable cardinal if there exists a κ-complete free ultra-
filter on κ. We will call such an ultrafilter a measure (on κ).

Remark. If U is a measure on κ, then [κ]<κ ∩U = ∅, and so if κ were singular we could find a
short sequence of small sets whose union would cover κ, which would violate the completeness
of U . In particular, measurable cardinals must be regular.

As was the case so far, note that ω is measurable, since every ultrafilter is ω-complete. So
we will implicitly assume that our cardinals are uncountable.

Theorem 3.2. Suppose that κ is a measurable cardinal, then κ is an inaccessible cardinal.

Proof. Since there is a measure, U , on κ it must be that κ is regular, so it is enough to check
that if α < κ, then 2α < κ.

Suppose that α is such that 2α ≥ κ, then there is a family S ⊆ 2α such that |S| = κ,
so we can write it as {fβ | β < κ}. For each ξ < α, let Aξ = {β < κ | fβ(ξ) = 0} and
Bξ = {β < κ | fβ(ξ) = 1}, let Cξ denote whichever one of those two is in U . Since U is
κ-complete, C =

⋂
ξ<αCξ ∈ U . However, if β, γ ∈ C, then for all ξ < α it must be that

fβ(ξ) = fγ(ξ), so C must be a singleton and therefore U is not a free ultrafilter.

The first question, therefore, is why do we require so much from the measure? What if we
were to require mere ω1-completeness? As the following theorem shows, this will not change
much.

Theorem 3.3. If U is an ultrafilter on κ, then the completeness of U is a measurable cardinal
or ω.

Proof. Let λ be the completeness of U , which means that there is a sequence of pairwise disjoint
sets {Xα | α < λ} ∩ U = ∅ such that

⋃
Xα = κ. We can define a map f : κ → λ by f(ξ) = α if

and only if ξ ∈ Aα.
Define U∗ = {A ⊆ λ | f−1(A) ∈ U}, then U∗ is a λ-complete ultrafilter on λ, since the

pre-image preserves inclusion, arbitrary intersections, and completements.

Corollary 3.4. If κ is the least cardinal on which there is an ω1-complete free ultrafilter, then
κ is a measurable cardinal.
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The following theorem is a consequence of Theorem 3.2, but it is worth proving explicitly.

Theorem 3.5. For any λ, λ+ is not a measurable cardinal.

Proof. We will construct a (λ+, λ)-Ulam matrix, a family of sets {Aα,β ⊆ λ+ | α < λ+, β < λ}
such that:

1. If α ̸= α′, then for all β < λ, Aα,β ∩Aα′,β = ∅.

2. For every α, |λ+ \
⋃

β<λAα,β| ≤ λ.

Suppose that we have managed to construct such an Ulam matrix, if U is a λ+-complete
ultrafilter on λ+, then for each α there is some β < λ such that Aα,β ∈ U . Therefore there is
some α ̸= α′ such that Aα,β and Aα′,β are both in U , just by cardinality arguments of the index
sets. However, this is impossible, since Aα,β ∩Aα′,β = ∅ ∈ U .

Let us show, then, that such an Ulam matrix exists. For each ξ < λ+ let fξ : λ → ξ be a
surjection.10 We define

Aα,β = {ξ < λ+ | fξ(β) = α}.

If β < λ, then for each ξ < λ+ there is a unique α such that ξ ∈ Aα,β, namely fξ(β). So the
first condition holds. If α < λ+, then for every ξ > α, α ∈ rng fξ, so λ+ \

⋃
β<λAα,β ⊆ α + 1

and therefore the second condition holds and this is indeed an Ulam matrix.

The original application of an Ulam matrix was to show that if there is an ω1-complete, non-
atomic, and total measure (in the measure theoretic sense) on R, then 2ℵ0 ̸= ℵ1. The argument
shows that 2ℵ0 , in that case, must be weakly inaccessible. This connects to the concept of
real-valued measurable cardinals which are equiconsistent with measurable cardinals, but they
are distinct from them, for example such cardinals must be at most 2ℵ0 .
Remark. It is consistent with ZF that ω1 is measurable. The above proofs shows that in
that case we cannot have an Ulam matrix, and moreover, there is no sequence fα : ω → α of
surjections for all α < ω1.

3.1.1 Embeddings

Definition 3.6. We say that κ is a critical cardinal if there is a transitive set N and an
elementary embedding j : Vκ+1 → N such that crit(j) = κ.

Exercise 3.7. Every critical cardinal is weakly compact. Indeed, it is the limit of weakly compact
cardinals.

Exercise 3.8. If j : Vκ+1 → N is witnessing that κ is critical, then Vκ+1 ⊆ N .

Theorem 3.9. κ is a measurable cardinal if and only if it is a critical cardinal.

Proof. Suppose that κ is a measurable cardinal and let U be a measure on κ. Then the ul-
trapower V κ

κ+1/U is well-founded, since U is ω1-complete, as in the proof of Theorem 2.18
(3) → (5): if {fn | n < ω} is such that An = {α < κ | fn+1(α) ∈ fn(α)} ∈ U , then picking any
α ∈

⋂
n<ω An we have that {fn(α) | n < ω} is a counterexample to the Axiom of Foundation.

Therefore we can take N to be the transitive collapse of the ultrapower, and j is the ultrapower
embedding composed with the collapsing isomorphism.

10Pick any function for ξ = 0.
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To see that crit(j) = κ, note that for δ < κ, if {α < κ | f(α) < δ} ∈ U , then there is a
unique γ < δ such that {α < κ | f(α) = γ} ∈ U , and therefore f is equal (in the ultrapower) to
the constant function cγ , and so j(δ) = δ. On the other hand, it is easy to see that id : κ → κ
satisfies for any α < κ, α = j(α) = [cα] < [id] < [cκ] = j(κ).

In the other direction, let j : Vκ+1 → N be an elementary embedding with crit(j) = κ. We
define U = {A ⊆ κ | κ ∈ j(A)}. Note that this is indeed a well-defined set as P(κ) ⊆ Vκ+1. Let
us check that U is a measure on κ.

If {Aα | α < γ} ⊆ U for some γ < κ, then for all α < γ, κ ∈ j(Aα). In particular,
κ ∈

⋂
α<γ j(Aα). Since j(γ) = γ this can be written as

⋂
α<j(γ) j(Aα), which therefore translates

to j(
⋂

α<γ Aα). So U is κ-complete. It is easy to verify that U is closed under supersets and for
any A ⊆ κ, either A ∈ U or κ \A ∈ U .

The following exercises provide ways of discussing elementary embeddings between V and a
transitive class M in a first-order way.

Exercise 3.10. Using the Scott equivalence class (taking the least ranked sets in an equivalence
relation defined on a proper class) show that Theorem 3.9 can be extended so that the embedding
is defined from V to an inner model M .

Exercise 3.11. Suppose that j : M → N is an unbounded embedding between transitive classes (or
sets) satisfying ZFC. Namely, for all α ∈ OrdN there is some β ∈ OrdM such that j(β) > α. Show
that j is elementary if and only if it is Σ1-elementary.

Definition 3.12. Suppose that j : M → N is an elementary embedding of transitive sets, the
derived measure from j is derM (j) = {A ∈ P(crit(j)) ∩ M | crit(j) ∈ j(A)}. In the case where
P(crit(j)) ⊆ M , we omit the superscript.

Theorem 3.13. Let κ be a measurable cardinal and let j : V → M be an embedding with
crit(j) = κ. Then the derived measure is a normal measure. Namely, any of the following
equivalent conditions hold:

1. der(j) is closed under diagonal intersections. Namely, if {Aα | α < κ} ⊆ der(j), then
△α<κAα = {α < κ | α ∈

⋂
β<αAβ} ∈ der(j).

2. der(j) satisfies Fodor’s lemma. Namely, if f : S → κ is a regressive function for some
S ∈ der(j), then there is some α such that f−1(α) ∈ der(j).

3. id represents κ in the ultrapower by der(j). Namely, the equivalence class [id] is mapped
to κ by the transitive collapse.

Proof. Let us prove one of the conditions holds, and that the three are equivalent. Suppose that
S ∈ der(j) and f : S → κ is regressive. Then κ ∈ j(S), and j(f) : j(S) → j(κ) is regressive, so
j(f)(κ) = α for some α < κ. This means that κ ∈ j(f)−1(α) = j(f−1(α)), so f−1(α) ∈ der(j)
as wanted.

The proof that (1) → (2) is the same as the proof of Fodor’s lemma. If f is regressive,
letting Aα = f−1(α), then either Aα ∈ der(j) for some α, or else taking β ∈ S ∩ △α<κ(κ \Aα)
we have that f(β) ̸= α for all α < β, so f is not regressive.

For (2) → (3), let [f ] represent an ordinal below [id], then S = {α < κ | f(α) < α} ∈ der(j)
which means that f is regressive on S, so by our assumption there is some S′ ∈ der(j) such
that f is constant on S′, in which case [f ] = [cα] for some α < κ.

Finally, (3) → (1). Given a sequence A = ⟨Aα ∈ der(j) | α < κ⟩, κ ∈ j(△A) if and only if
κ ∈

⋂
α<κ j(A)(α) =

⋂
α<κ j(Aα). However, since κ ∈ j(Aα) for all α < κ, this holds.
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Let U be an ω1-complete ultrafilter on some κ, then the ultrapower V κ/U is well-founded.
We denote by Ult(V,U) the transitive collapse of the ultrapower and by jU the elementary
embedding. We will use [f ]U to denote both the equivalence class of f and the member of
Ult(V,U) it represents, and when clear from context, we will omit the subscripts with impunity.

Exercise 3.14. Let U be a normal measure on κ, then Ult(V,U) = {j(f)(κ) | f : κ → V }.

Theorem 3.15. Suppose that j : V → M and crit(j) = κ. Let U = der(j), then there exists an
elementary embedding k : Ult(V,U) → M such that j = k ◦ jU .

Proof. Define k([f ]) = j(f)(κ), for f : κ → V , then k is the wanted elementary embedding.

Exercise 3.16. Complete the above proof.

Corollary 3.17. If U is a normal measure on κ, then der(jU ) = U .

3.2 Structure of ultrapowers

Two major questions come to mind at this point. Can we have Ult(V,U) = V somehow? And
if j : V → M , does that mean that j = Ult(V, der(j))? Both answer to the negative in quite
significant ways.

Proposition 3.18. Let κ be a measurable, U a measure, and j : V → M = Ult(V,U) is the
ultrapower embedding.

1. P(κ) = P(κ)M .

2. κ+ = (κ+)M .

3. 2κ < j(κ) < (2κ)+.

4. Mκ ⊆ M .

Proof. (1) is immediate from the fact that κ = crit(j), since A = j(A) ∩ κ for all A ⊆ κ. In
particular, if α < κ+, there is some subset of κ which encodes a well-ordering of type α, so
α < (κ+)M , and since M ⊆ V , it must be that (κ+)M ≤ κ+, so (2) holds.

To prove (3), note that j(κ) = [cκ], is strictly larger than any f ∈ κκ, and therefore
2κ < j(κ), on the other hand, j(κ) < (2κ)+, since any function representing α < j(κ) must be
represented by f : κ → κ.

Finally, Mκ ⊆ κ, since if {xα | α < κ} ⊆ M , then there are fα : κ → V which represent the
xα, and fix h : κ → κ which represents κ in M , we define f : κ → V such that f(ξ) : h(ξ) → V
and h(ξ)(α) = fα(ξ). By Łoś’s theorem [f ] = {xα | α < κ} ∈ M .

Theorem 3.19. Let U be a measure on κ, then U /∈ Ult(V,U).

Proof. Since (κκ)V ∈ Ult(V,U), if U was in the model, the function f 7→ [f ] would be in the
model as well. However, in that case, Ult(V,U) |= 2κ < j(κ) < (2κ)+. But j(κ) is inaccessible
in Ult(V,U).

Corollary 3.20. If there is a measurable cardinal, then V ̸= L. In particular, if κ is measurable,
then it is not measurable in L.

Exercise 3.21 (*) . Find a direct proof that if κ is measurable, then V ̸= L.
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Exercise 3.22. Suppose that U is a normal measure on κ, then there is some f : κ → κ such that
{f“A | A ∈ U} is a measure that is not normal.

We actually get much more than just V ̸= L. We will see that if κ = ω1, then there is an
elementary embedding j : Lκ → Lκ, and that if λ = ωω, then L |= cf(λ) = λ.

3.3 Iterations and Gaifman’s theorem

At this point, one is left wondering, are there any embeddings that do not come from ultrapow-
ers? The answer to that is in a sense both yes and no.

If U was a measure on κ and jU : V → Ult(V,U), then jU (U) is a measure on j(κ) in
Ult(V,U). Therefore, we can define Ult(Ult(V,U), jU (U)). This process can be iterated, of
course. We need a notion of a direct limit for the generalisation.

Definition 3.23. Let ⟨I,<⟩ be a directed set and suppose that {Mi, ei,j | i, j ∈ I} is a directed
system of models of ZFC such that:

1. ei,k : Mi → Mk.

2. ei,i = id.

3. ej,k ◦ ei,j = ei,k for all i < j < k ∈ I.

We define an equivalence relation on M =
⋃

i∈I{i} × Mi given by ⟨i, a⟩ ≡ ⟨j, b⟩ if and only if
there exists k such that i, j < k and ei,k(a) = ej,k(b). Then M = M/≡ is the direct limit of the
diagram and defining ei : Mi → M with ei(a) = [⟨i, a⟩] is an elementary embedding.

Exercise 3.24. Verify that M is well-defined and that ei are elementary maps.

Definition 3.25. Let U be a measure on κ, we define Ultα(V,U) to be the αth iterated
ultrapower, where at limit stages we take the direct limit and at successor steps we take
Ult(Ultα(V,U), jα

U (U)).

Exercise 3.26. Ultα(Ultβ, jβ
U (U)) = Ultβ+α(V,U).

Exercise 3.27. Suppose α + β = γ and let jα,γ be the factor embedding between Ultα(V,U) and
Ultγ(V,U). Then jα,γ = jβ

jα
U (U).

Theorem 3.28 (Gaifman). Let κ be a measurable cardinal and U a measure. Then for all α,
Mα = Ultα(V,U) is well-founded.

Proof. For α = 0, M0 = V , and for α + 1 this follows from the ω1-completeness of jα
U (U) in

Ultα(V,U). Finally, suppose that Mα is ill-founded for a limit ordinal α, and suppose that Mβ

was well-founded for all β < α. As Mα is not well-founded, let ξ ∈ Ord be the least one such that
jα(ξ) is not well-founded and let [⟨βn, fn⟩] be a descending sequence witness the ill-foundedness.

Let β = β0 and let λ be the ordinal in Mβ that f0 represents and let δ be an ordinal such
that β + δ = α. Note that λ < jβ(ξ), since jβ,α(λ) < jα(ξ) = jβ,α(ξ).

By our assumption, V |= (∀α′ ≤ α)(∀ξ′ < ξ)Mα′ is well-founded below jα′(ξ′). If we apply
jβ we get that

Mβ |= (∀α′ ≤ jβ(α))(∀ξ′ < jβ(ξ)) Ultα′(Mβ, jβ(U)) is well-founded below jβ(ξ′).
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But since δ ≤ α ≤ jβ(α) and λ < jβ(ξ), we can apply the factor embedding, jβ,α, which is the
δth iterate in Mβ. So we get

Mβ |= Ultδ(Mβ, jβ(U)) is well-founded below jδ
jβ(U)(λ).

However, this is a contradiction since jβ,α(λ) is ill-founded in Mα = Ultδ(Mβ, jβ(U)).

Since Ultα(V,U) is always well-founded, we can confuse it with its transitive collapse, as we
normally do, and the following exercise becomes meaningful.

Exercise 3.29. Let α be a limit ordinal, then jα
U (κ) = sup{jβ

U (κ) | β < α}.

Under some additional axioms, e.g. that the universe is a canonical enough inner model, all
elementary embeddings are obtained by iterating ultrapowers, and in the smallest such model
there will be exactly one measurable cardinal with a single normal measure on it, and every
embedding will be an iterate of that ultrapower.

Exercise 3.30. Let α be a limit ordinal, then Ultα(V,U) is not closed under ω-sequences.

3.4 Covering more structural consequences

Corollary 3.31. If U is a measure on κ, then there is a closed and unbounded class of ordinals,
C, such that α ∈ C if and only if there is an iterated ultrapower embedding mapping κ to α.

Fixing κ and U let us write κα to denote jα
U (κ). Let us explore some consequence of the

existence of a measurable cardinal.

Proposition 3.32. Lκα |= ZFC.

Proof. Lκ |= ZFC, since κ is inaccessible, since for any elementary embedding, j, j(Lα) = Lj(α)
and V |= “Lκ |= ZFC” the conclusion follows.

Proposition 3.33. Let η = ω1. Lη |= ZFC and there is a non-trivial elementary embedding
j : Lη → Lη.

Proof. Let M be the elementary submodel of Lκω1
that is generated by {κα | α < ω1}, then

M ∼= Lη, and so M |= ZFC, since Lκω1
|= ZFC and there is a non-trivial elementary embedding

j : Lη → Lη given by noting that the map κα 7→ κ1+α induces such an embedding.

This embedding from Lη → Lη can be extended to an embedding L → L, and in fact if
we consider the elementary submodel of L generated by the class C, it must be isomorphic to
L again, and so any order preserving embedding C → C extends to an embedding L → L,
this defines a closed and unbounded class of ordinals which are critical points of these sort of
embeddings. In particular, we can show that all the cardinals from V are in this class, and
much more than that. This leads us to these consequences.

Proposition 3.34. If η is a cardinal, then L |= cf(η) = η.

Proof. If η ≤ ω1 this is always true. Otherwise, there is an elementary embedding of L → L
such that j(ωV

1 ) = η.

Exercise 3.35. If η > ω is a cardinal, then L |= “η is weakly compact”.
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The important thing to notice is that these elementary embeddings from L to itself, or from
Lη to itself, are not themselves in L. This shows that not only V ̸= L, but in fact V is very far
from being L. Embeddings like this are referred to as “sharps” with the case for L called 0#,
and more generally if L(A) has an embedding into itself we say that A# exists.

We will not prove the following theorem.

Theorem 3.36. The following are equivalent.

1. There exists a non-trivial elementary embedding j : L → L.

2. There exist a pair of cardinals, λ < κ such that Lλ ≺ Lκ.

3. ℵω is regular in L.

4. ℵω is inaccessible in L.

5. ℵω is weakly compact in L.

6. (ℵ+
ω )L < ℵω+1.

7. There exists an uncountable set A ⊆ Ord such that whenever B ∈ L and A ⊆ B, |A| < |B|.

There are many more equivalences we can add to this list. The last equivalent condition is
known as “Jensen’s covering lemma” which can be stated as “0# exists if and only if L does
not cover all the uncountable sets of ordinals.” This can be generalised to other inner models
and have been studied extensively.

3.5 Higher measurability

In Theorem 3.19 we saw that if U is a measure on κ, then U /∈ Ult(V,U). So is κ a measurable
cardinal in Ult(V,U)?

Proposition 3.37. Suppose that φ is a first-order property and j : V → M is an elementary
embedding with crit(j) = κ. If M |= φ(κ), then {α < κ | V |= φ(α)} ∈ der(j).

Proof. Let A = {α < κ | V |= φ(α)} and notice that κ ∈ j(A).

In particular, if M |= “κ is measurable”, then there is an unbounded set of measurable
cardinals below κ. The following exercise shows that this is not nearly enough.

Exercise 3.38. If κ is the least measurable that is a limit of measurable cardinals, then there is no
embedding j : V → M with crit(j) = κ where M |= “κ is measurable”.

Since der(j) is a normal ultrafilter, it must contain the club filter, so the sets in der(j) are
always stationary, to say the least. Therefore there is a large number of measurable cardinals
below κ. But we can look at this from a different perspective.

Definition 3.39. Let κ be a measurable cardinal and let U0, U1 be two normal measures. We
say that U0 is below U1 in the Mitchell order if U0 ∈ Ult(V,U1). We denote this by U0 ◁ U1.

Theorem 3.40. Show that U0 ◁ U1 if and only if there is a function f : κ → Vκ such that

A ∈ U0 ⇐⇒ {α | A ∩ α ∈ f(α)} ∈ U1.

In particular, f(α) must be a measure on α on a U1-large set.
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Proof. Suppose that U0 ◁ U1, then there is f : κ → V such that j(f)(κ) = U0, then A ∈ j(f)(κ)
if and only if j(f)(A) ∩ κ ∈ j(f)(κ), so {α < κ | A ∩ α ∈ f(α)} ∈ U1. The other direction
follows from the same argument ran backwards.

Lemma 3.41. Suppose that U0 ◁ U1 are normal measures on κ, then jU0(κ) < jU1(κ).

Proof. In M = Ult(V,U1) we can compute jU0↾Vκ+1, so M |= 2κ < jU0(κ) < (2κ)+ < jU1(κ).

So, is κ always measurable in its ultrapowers? The answer is negative.

Theorem 3.42. The Mitchell order on κ is a well-founded strict partial order.

Proof. The fact that ◁ is irreflexive is an immediate consequence of Theorem 3.19. Using
Theorem 3.40 we see that if U0 ◁ U1 ◁ U2, then the function f for which jU1(f)(κ) = U0 is in
Ult(V,U2), and therefore U0 ◁ U2. It remains to show that the order is well-founded. Suppose
that Un is a sequence of measures such that Un+1 ◁ Un for all n < ω. By Lemma 3.41, jUn(κ)
form a decreasing sequence of ordinals, which is impossible.

Exercise 3.43. Find a direct argument that ◁ is well-founded by arguing that if κ is the least one
for which ◁ is ill-founded we can obtain a contradiction.

Corollary 3.44. If κ is a measurable cardinal, then there is a normal measure U such that
{α < κ | α is not measurable} ∈ U .

Definition 3.45. We write o(U) to denote the rank of U in the Mitchell order and o(κ) to
denote sup{o(U) + 1 | U is a measure on κ}.

Exercise 3.46. Using Theorem 3.40 show that if U is a normal measure on κ, then o(U) < (2κ)+.

It follows from this exercise that o(κ) ≤ (2κ)+, so under GCH, which is a common assumption
in this situation, o(κ) ≤ κ++. Since GCH holds in “canonical enough” inner models, the Mitchell
order large cardinal axioms are often given in that context. For example.

Fact 3.47. The following are equiconsistent.

1. For each n < ω, 2ℵn = ℵn+1 and 2ℵω = ℵω+2.

2. ∃κ(o(κ) = κ++).

Proposition 3.48. Let U be a normal measure on κ. If o(U) = α, then Ult(V,U) |= o(κ) = α.

Proof. If U ′ ◁ U , then U ′ ∈ Ult(V,U). Therefore the measures on κ in Ult(V,U) are exactly
◁ ↾U . As Ult(V,U) is transitive, it agrees on well-foundedness and rank with V , so o(κ) = α.

If κ is Mahlo, we find this is witnessed by a canonical object: a stationary set; if κ is a
measurable cardinal, this is witnessed by a measure on κ. These are, in a sense, sort of local
conditions. They have implications on the universe, but these are global. What about higher
Mitchell orders, then?

If κ is a measurable cardinal and U is a normal measure on κ, then we can construct the
model L[U ], which is a model in which U ∩ L[U ] is the unique normal measure on κ. In this
model κ is the only measurable cardinal and any embedding is an iterated ultrapower embedding
starting from U ∩L[U ]. If we want a single object to capture o(κ) > 1, this requires us to have
not only multiple measures on κ, but also measures on many cardinals below κ.
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If our goal is to capture this concept in a minimal fashion, the simplest well-founded order
which has rank α is the ordinal α itself. So we should expect this to be a sequence of measures
of some length. And we want it to be coherent, in the sense that each measure on the sequence
which capture that very sequence up to it.

Definition 3.49. We say that U is a coherent sequence of measures if it is a function such that:

1. dom(U) = {⟨κ, β⟩ | κ < len(U) and β < oU (κ)}, where len(U) is a cardinal which is the
length of the sequence, and oU is a function mapping ordinals to ordinals.

2. If ⟨κ, β⟩ ∈ dom(U), then U(κ, β) is a normal measure on κ.

3. If U = U(κ, β), then ojU (U)(κ) = β and jU (U)(κ, β′) = U(κ, β′) for all β′ < β.

In other words, U is a sequence of measures on many cardinals at once, which have the
property that each measure in the sequence “captures” the sequence up to the measure. So,
not only this will witness a Mitchell order, but in fact, it will be a well-ordered.

Fact 3.50. If U is a coherent sequence of measures, then L[U ] is a model where for any cardinal
κ, L[U ] |= o(κ) = oU (κ). In particular, κ is measurable in L[U ] if and only if oU (κ) > 0.
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Chapter 4

Strength in numbers!

4.1 Strong cardinals

We saw that a measurable cardinal is a critical point of an embedding. If we wanted the critical
point to remain measurable in the target model, it turns out that we needed to assume stronger
axioms than just a single measurable cardinals hold in the universe. We also saw that if U is a
measure on κ, then Ult(V,U) is not (2κ)+-closed, since U itself is not in the model. So we can
ask, what does it take to “know more” about the universe in the target model?

Definition 4.1. We say that a cardinal κ is an α-strong cardinal if there exists an elementary
embedding j : V → M such that crit(j) = κ, κ + α < j(κ), and Vκ+α ⊆ M , we will often refer
to the embedding j as being an α-strong embedding. We say that κ is a strong cardinal if it is
α-strong for all α.

Remark. 1. In many places we forego the κ+ α in favour of α itself. Namely, κ+ α-strong
would be α-strong in our terminology. If α > κ2, then these two coincide, and in any case
the term “strong cardinal” is unaffected.

2. In some places the requirement that κ+ α < j(κ) is also removed. We will see later why
if this is not the case, there will be a finite iterate of j which does satisfy this property,
but for now it is a simplifying assumption that we aim to keep.

Exercise 4.2. Show that κ is a strong cardinal if and only if for every x there existsM and j : V → M
elementary with crit(j) = κ and x ∈ M .

Exercise 4.3. κ is measurable if and only if κ is 1-strong.

Exercise 4.4 (*) . If U is a measure on κ, then jU is not a 2-strong embedding.

If 2-strong cardinals, and therefore strong cardinals, are certainly above measurable, what
can we say about their Mitchell order? It comes, perhaps, as no surprise, that the Mitchell
order is in fact maximal.

Theorem 4.5. If κ is 2-strong, then o(κ) = (2κ)+.

Proof. Given any collection of at most 2κ measures on κ we can encode them as a single subset of
P(κ). By Lemma 4.6, there is a normal measure U for which this set of measures in Ult(V,U).
Therefore, by induction we can prove that for any α < (2κ)+, there is a normal measure of
Mitchell rank at least α.
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Lemma 4.6. If κ is 2-strong, then for every A ⊆ P(κ) there is a normal measure on κ, U ,
such that A ∈ Ult(V,U).

Proof. Towards contradiction assume that “There exists a subset of P(κ) which is not in any
ultrapower by a normal measure on κ”. Let j : V → M be a 2-strong embedding with crit(j) = κ,
then A ∈ M . Since M computes ultrapowers of Vκ+2 (by measures on κ) correctly, M agrees
on the truth of our assumption.

Let D = der(j) and let k : Ult(V,D) → M be the factor elementary embedding. Then
crit(k) = jD(κ) > κ, and since k is an elementary map, Ult(V,D) agrees that “There exists a
subset of P(κ) which is not in any ultrapower by a normal measure on κ”. Let X ∈ Ult(V,D)
be such witness, then k(X) = X, so in M it holds that X cannot be in an ultrapower by a
normal measure on κ. However, this is a contradiction, since D ∈ M , and so M can see that X
is in Ult(V,D).

We saw that measurable cardinals corresponded to ultrapower embeddings, so a natural
question is if there is a nice combinatorial objects that will capture the notion of a strong
embedding. As we saw above, ultrapower embeddings will not let us even capture 2-strong
embeddings. One can ask, therefore, if there is a canonical combinatorial object which can
capture these notions?

4.2 Extenders

4.2.1 Deriving an extender

For the purpose of this section, let us fix an elementary embedding j : V → M with crit(j) = κ.
We do note require that j is strong or that M is closed. Let us also fix κ ≤ λ ≤ j(κ). We want
to approximate j with ultrapowers, but this may very well be impossible, as jder(j)(κ) could be
significantly smaller than j(κ). Indeed, much worse could happen, it can be that der(j) ∈ M ,
in which case even iterating the ultrapower by der(j) will not be a good approximation.

Instead, we will derive many different measures and use them to define a directed system
of models. So, for some λ ≤ j(κ) we want to find some N(λ) and elementary embedding
iλ : V → N(λ) which factors j, so that j = kλ ◦ iλ, and crit(kλ) ≥ λ. In other words, we will
approximate j up to λ. If j was an α-strong embedding, setting λ = κ+ α we get that iλ and
N(λ) are as close as we can get to an ultrapower approximation of j and M .

For a ∈ [λ]<ω we define the measure on [κ]|a|,

Ea = {X ⊆ [κ]|a| | a ∈ j(X)}.

Exercise 4.7. Ea is a κ-complete ultrafilter on [κ]|a|.

If a ⊆ b are two finite subsets of λ, b = {α0 < · · · < αn} and a = {αi0 < · · · < αim}, then
there is a projection map πb,a : [κ]|b| → [κ]|a| given by πb,a({ξ0 < · · · < ξn}) = {ξi0 < · · · < ξim}.

Exercise 4.8. X ∈ Ea ⇐⇒ π−1
b,a(X) ∈ Eb.

Exercise 4.9. The map ja,b : Ult(V,Ea) → Ult(V,Ub) given by ja,b([f ]) = [f ◦ πb,a] is the factor
embedding between jEa and jEb

.
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Exercise 4.10 (*) . The system {Ult(V,Ea), ja,b | a, b ∈ [λ]<ω} is directed and has a well-founded
direct limit.

Definition 4.11. Let j : V → M be an elementary embedding and let κ = crit(j), λ ∈ [κ, j(κ)].
We say that E = {Ea | a ∈ [λ]<ω} is a (κ, λ)-extender. We say that λ is the length of the
extender. We write Ult(V,E) to denote the direct limit of the system, and jE is the associated
embedding.

We can represent E in many different ways, e.g.

E = {⟨a,X⟩ | a ∈ [λ]<ω, X ⊆ [κ]<ω, a ∈ j(X)}.

In that case, Ea = {X ∈ [κ]|a| | ⟨a,X⟩ ∈ E} is the same ultrafilter we defined before.

Exercise 4.12. If E is a (κ, λ)-extender, then Ult(V,E) = {jE(f)(a) | a ∈ [λ]<ω, f : [κ]<ω → V }.

4.2.2 Extender ultrapowers

Theorem 4.13. Let j : V → M be an elementary embedding with crit(j) = κ, κ ≤ λ ≤ j(κ)
and let E be the derived (κ, λ)-extender. Then k : Ult(V,E) → M given by k([a, f ]) = j(f)(a)
satisfies k ◦ jE = j. In particular, k is an elementary embedding with crit(k) = jE(κ) ≥ λ.

Proof. Suppose that α < κ, then for each a, Ea is a κ-complete ultrafilter, it is not hard to
check that crit(jEa) ≥ κ, so crit(jE) ≥ κ. Since E{κ} ∼= der(j) under the bijection α 7→ {α}, we
get that crit(jE{κ}) = κ, and so jE(κ) > κ as wanted.

To see the elementarity of k holds note that

Ult(V,E) |= φ([a, f ]) if and only if
Ult(V,Ea) |= φ(jEa(f)(a)) if and only if
M |= φ(j(f)(a)).

In particular, since V |= crit(j) = κ, Ult(V,E) |= crit(k) = jE(κ). Finally, if α < λ, let [a, f ] be
a pair representing α in Ult(V,E), then jEa(f)(a) = α, therefore j(f)(a) = jEa(f)(a) = α, and
so k(α) = α, so crit(k) ≥ λ as wanted.

Theorem 4.14. E ⊆ [λ]<ω × P([κ]<ω) is a (κ, λ)-extender if and only if for each a ∈ [λ]<ω

setting Ea = {X | ⟨a,X⟩ ∈ E}, satisfies:

1. Ea is a κ-complete ultrafilter on [κ]|a| for all a.

2. Ea is not κ+-complete for each least one a.

3. For each α < κ there is a such that {s ∈ [κ]|a| | α ∈ s} ∈ Ea.

4. The projections πb,a defined previously satisfy Exercise 4.8.

5. If {s ∈ [κ]|a| | f(s) < max s} ∈ Ea, then there is some β such that

{t ∈ [κ]|a∪{β}| | (f ◦ πa∪{β},a)(t) ∈ t} ∈ Ea∪{β}.

6. The direct limit of the ultrapower models is well-founded.

Definition 4.15. We say that an extender, E, is α-strong if α is the largest ordinal such that
Vκ+α ⊆ Ult(V,E). We will also say, in this case, that α is the strength of E.
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Exercise 4.16 (**) . If κ is a strong cardinal, then for all λ > κ there is a (κ, λ)-extender, E, and
f : κ → κ such that jE(f)(κ) = λ.

Exercise 4.17. The direct limit of a (κ, λ)-extender is well-founded if and only if for every sequence
an ∈ [λ]<ω and Xn ∈ Ean , there is a function f :

⋃
n<ω an → κ such that f“an ∈ Xn for all n < ω.

If an extender satisfies the condition in the above exercise we say that it is countably closed.

Theorem 4.18. κ is an α-strong cardinal if and only if there exists an α-strong (κ, |Vκ+α|+)-
extender.

Remark. 1. It is worth noting that we say that we can derive these extenders from every
embedding. It is also true that we can use any ordinal λ. If λ > j(κ), however, we might
need to have the filters defined on larger ordinals. We can therefore define extenders in
general as having a sequence of critical points, ⟨κa | a ∈ [λ]<ω⟩, and have the ultrafilters
concentrate on [κa]|a| instead. If there is more than one critical point, the extender is
called long and otherwise it is called short.

2. Extenders will often be defined on mice, which are usually taken as models of a fragment
of ZFC which have a largest cardinal, and a predicate for a measure or an extender which
allows us to iterate various embeddings and “stretch” the mouse to become taller and
taller.

3. We can define a coherent sequence of extenders in a way that is similar to coherent sequence
of measures, which allows us to define “extender models” which are of the form L[E ] for
some coherent sequence of extenders, E . Here the story can get much more complicated
as the coherence becomes more difficult to maintain as we have more extenders. One
condition of interest is “overlapping” (or “non-overlapping”) sequence of extenders which
tells us that the extenders can be applied in a “more or less independent way”, so their
“reach” (in both critical points and strength) is or is not overlapping.

4.3 Structural consequences

Since strong cardinals capture a significant amount of information in various embeddings, one
can ask if there can be j : V → V which is non-trivial. We will spoil the answer now and
reveal that Kunen’s inconsistency theorem shows that such embedding contradicts the Axiom
of Choice when it is definable. In fact, if j : Vλ+2 → Vλ+2 is a non-trivial elementary embedding,
then the Axiom of Choice must fail. We will see a proof of this theorem later, but the theorem
has an interesting consequence.

Theorem 4.19. Suppose that a strong cardinal exists, then V ̸= L[A] for all A.

Proof. Let κ be a strong cardinal and let A be a set of ordinals such that V = L[A]. Then
there is some j : V → M with crit(j) = κ and A ∈ M . Since A ∈ M , L[A] ⊆ M ⊆ V = L[A],
so M = L[A] as well, and therefore j : L[A] → L[A] allows us to derive an extender and have a
definable elementary embedding j : V → V .

Theorem 4.20. If κ is a strong cardinal, then Vκ ≺Σ2 V .

Proof. Let φ(x, y, z) be a ∆0-formula and suppose that a ∈ Vκ such that ∃y∀zφ(a, y, z) holds in
V . Let b be such that ∀zφ(a, b, z) holds, then there is a strong embedding j : V → M such that
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b ∈ M and crit(j) = κ and j(κ) > rank(b). Therefore in M it holds that (∃y ∈ Vj(κ))∀zφ(a, y, z),
so by elementarity, we can assume that b ∈ Vκ. Therefore ∀zφ(a, b, z) holds, but since Vκ is
transitive and ∀zφ(a, b, z) is absolute, the conclusion follows.

In the other direction, suppose that Vκ |= ∃y∀zφ(a, y, z), let b ∈ Vκ be a witness, so that
Vκ |= ∀zφ(a, b, z). For any c ∈ V there is some strong embedding with critical point κ such that
c ∈ M and j(κ) > rank(c). In this M it holds that Vj(κ) |= ∀zφ(a, b, z), so Vj(κ) |= φ(a, b, c) in
M . But since V M

j(κ) is a transitive set, φ(a, b, c) holds in V .

Exercise 4.21. If κ is inaccessible, then Vκ ≺Σ1 V .

4.4 Superstrong cardinals

Definition 4.22. A cardinal κ is called a superstrong cardinal if there exists an elementary
embedding j : V → M with crit(j) = κ and Vj(κ) ⊆ M .

As before, we will refer to such an embedding as a superstrong embedding.

Theorem 4.23. If κ is a superstrong cardinal, then there exists a transitive model of ZFC with
a strong cardinal.

Proof. Let j : V → M be a superstrong embedding with crit(j) = κ. Therefore Vj(κ) is an
elementary end-extension of Vκ, and so in particular j(κ) is a strong limit cardinal. We can
derive an extender from j such that for all λ < j(κ), the restriction of the extender to λ is in
Vj(κ). Therefore Vj(κ) |= κ is a strong cardinal.

We will see later on that the consistency strength of a superstrong is much more than just
that of a strong cardinal, but even the above theorem tells us that it is a stronger axiom.
However, this is where we start seeing a stark difference between the “largeness hierarchy” and
the “consistency hierarchy”.

Theorem 4.24. Suppose that there exist both a superstrong cardinal and a strong cardinal.
Then the least superstrong cardinal is below the least strong cardinal.

Proof. Fix a superstrong embedding j : V → M , namely Vj(crit j) ⊆ M . We can derive an exten-
der from j which will witness this embedding, so the statement that there exists a superstrong
cardinal is equivalent to “There exists κ and β and a (κ, β)-extender E such that jE(κ) = β and
Vβ ⊆ M”, let κ, β, and E be such objects. Let λ < κ be a strong cardinal, then there is a strong
embedding, i : V → N , which captures VjE(κ)+1 as well as E, etc. with i(λ) > β. Therefore in
N we have that κ is a superstrong cardinal, as the extender is in N and Vβ ⊆ N . In particular,
N thinks that there is a superstrong cardinal below i(λ), so in V there is a superstrong cardinal
below λ.
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Chapter 5

Woodin cardinals

Definition 5.1. We say that κ is a λ-A-strong cardinal, for some class A, if there is a λ-strong
embedding j such that crit(j) = κ and j(A) ∩ Vλ = A ∩ Vλ. If κ is λ-A-strong for all λ we say
that it is A-strong.

Remark. As we are going to be concerned with sufficiently strong embeddings, we will make
the tacit assumption that κ+ λ = λ, as to never worry about Vλ ̸= Vκ+λ.

Proposition 5.2. Suppose that δ is an inaccessible cardinal and A ⊆ Vδ, if κ < δ is a γ-A-
strong cardinal for some γ < δ, then there is an extender witnessing this in Vδ.

Proof. Let j : V → M be a γ-A-strong embedding with crit(j) = κ. Taking some λ < δ such
that γ < λ = |Vλ|, we derive E, a (κ, λ)-extender from j, then E ∈ Vδ. Let us argue that jE is
a γ-A-strong embedding. Let k : Ult(V,E) → M be the factor embedding, then crit(k) ≥ λ, so
crit(k) ≥ γ, and therefore k(V Ult(V,E)

γ ) = V M
γ = Vγ , so k is γ-strong. Moreover, as crit(k) > γ

we get that

A ∩ Vγ = j(A) ∩ Vγ = k(jE(A)) ∩ Vγ = k(jE(A) ∩ Vγ) = jE(A) ∩ Vγ .

Exercise 5.3. Let δ be an inaccessible cardinal and E ∈ Vδ is an extender, then jE(δ) = δ.

Definition 5.4. We say that δ is a Woodin cardinal if for every A ⊆ Vδ,

Vδ |= There is a proper class of A-strong cardinals.

Equivalently, there are unboundedly many κ < δ such that for all γ < δ, κ is γ-A-strong.

Proposition 5.5. If δ is a Woodin cardinal, then δ is inaccessible.

Proof. If δ is Woodin, let α < δ and let f : Vα → δ be any function. Then f ⊆ Vδ, find
κ > α which is f -strong in Vδ, pick some x ∈ Vα, and with λ = rank(f(x)) + 1 let j : V → M
be a λ-f -strong embedding with crit(j) = κ. Then j(f) ∩ Vλ = f ∩ Vλ, so j(f) = f as
dom f = Vα ∈ Vκ. However, since j(f)(x) = f(x) ∈ Vλ ⊆ Vj(κ), by elementarity, f(x) ∈ Vκ.
Therefore rng f ⊆ κ < δ.

Exercise 5.6. If δ is Woodin, then δ is a Mahlo cardinal.

Exercise 5.7. The least Woodin cardinal is not weakly compact. But every Woodin cardinal is the
limit of measurable cardinals.
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Lemma 5.8. Suppose that δ is a cardinal such that for every f : δ → δ there is some κ < δ
such that f“κ ⊆ κ and an embedding j : V → M such that crit(j) = κ and j is j(f)(κ)-strong,
then δ is inaccessible.

Proof. If δ is a singular cardinal, let f : cf(δ) → δ be a cofinal function with min rng f > cf(δ)
and extend it so that f(α) = 0 for α ≥ cf(δ). Then there is no κ < δ which is closed under f .
So δ must be regular. Next, note that if α < δ, then taking the function f(ξ) = α, it must be
that if f“κ ⊆ κ, then α < κ. Therefore, δ is the limit of measurable cardinals, so it must be a
strong limit, and therefore inaccessible.

Theorem 5.9. The following are equivalent for a cardinal δ:

1. For any A ⊆ Vδ, the set {κ < δ | Vδ |= κ is A-strong} is stationary in δ.

2. δ is Woodin.

3. For any A ⊆ Vδ, there exists κ < δ such that Vδ |= κ is A-strong.

4. For every f : δ → δ, there is κ < δ such that f“κ ⊆ κ and an embedding j : V → M such
that crit(j) = κ and Vj(f)(κ) ⊆ M .

Proof. (1)→(2) and (2)→(3) are trivial. Let us show that (3) implies (4). Let f : δ → δ be a
function and let κ < δ be the f -strong cardinal (in Vδ). Let γ = sup f“κ+42 and let j : V → M
be a γ-f -strong embedding, then for α < κ,

j(f(α)) = j(f)(j(α)) = j(f)(α) = f(α) < γ < j(κ),

and so f(α) < κ, so γ ≤ κ, and therefore f“κ ⊆ κ. Moreover, for α = κ, ⟨κ, f(κ)⟩ ∈ Vγ ,
therefore j(f)(κ) = f(κ), and in particular Vj(f)(κ) ⊆ Vγ ⊆ M , as wanted.

Finally, (4)→(1), let A ⊆ Vδ and let C be a club. Define g : δ → δ given by

g(α) =
{

0 if Vδ |= α is A-strong
γ γ is the least such that α is not γ-A-strong in Vδ.

Next define f(α) = max{g(α) + 5,min(C \ α)}. By the assumption, there is some κ < δ such
that f“κ ⊆ κ and there is j : V → M with crit(j) = κ and Vj(f)(κ) ⊆ M , moreover since δ is
inaccessible, we may assume that j is given by an extender in Vδ, so in particular j(δ) = δ. We
will show that κ ∈ j(C) and that in M , κ is γ-j(A)-strong for all γ < δ. Since f“κ ⊆ κ, it must
be that C ∩ κ is a club in κ, so κ ∈ j(C).

If j(g)(κ) = 0, then the proof is complete, since in M it means that κ is γ-j(A)-strong for
all γ < δ. Suppose this is not the case. Since j(f)(κ) > j(g)(κ) + 1, we can derive from j a
(κ, j(g)(κ) + 1)-extender, E. Since j was j(f)(κ)-strong, E ∈ M , so we can compute Ult(M,E)
inside M . However, the factor embedding k : Ult(V,E) → M has a critical point jE(κ), so
V

Ult(V,E)
j(g)(κ) = V

Ult(M,E)
j(g)(κ) , and so jM

E is a j(g)(κ)-j(A)-strong embedding in M . That is,

M |= E is j(g)(κ)-j(A)-strong,

but this implies that in V we have that κ is at least g(κ)-A-strong, using the same extender,
which is a contradiction to the assumption that g(κ) > 0.

We can now complete the proof that superstrong cardinals are in fact significantly stronger,
consistency-wise, than strong cardinals. Indeed, superstrong cardinals are significantly stronger
than Woodin cardinals.
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Theorem 5.10. If κ is superstrong, then there is a normal measure on κ concentrating on
Woodin cardinals.

Proof. Let j : V → M be a superstrong embedding with crit(j) = κ, then for every f : κ → κ,
j(f) : j(κ) → j(κ) and j(f) ↾ κ = f , so j(f)“κ ⊆ κ. Let E be the (κ, |Vj(f)(κ) + 1|M )-extender
derived from j, it is not hard to see that E ∈ Vj(κ), computing Ult(M,E) we have that jM

E is a
j(f)(κ)-strong embedding. Therefore, by elementarity,

{α < κ | f“α ⊆ α and there is an extender E which is jE(f)(α)-strong} ∈ der(j).

Definition 5.11. We say that κ is a Shelah cardinal if for every f : κ → κ there is an elementary
embedding j : V → M with crit(j) = κ and Vj(f)(κ) ⊆ M .

Exercise 5.12. If κ is Shelah, then it is Woodin.
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Chapter 6

Higher compactness

6.1 Strongly compact cardinals

Definition 6.1. We say that κ is a strongly compact cardinal if Lκ,κ is strongly compact.
Namely, whenever T is a κ-satisfiable Lκ,κ-theory, then T is satisfiable.

Theorem 6.2. Let κ be an uncountable cardinal, then the following are equivalent:

1. κ is strongly compact.

2. Every κ-complete filter can be extended to a κ-complete ultrafilter.

Proof. (1)→(2): Suppose that κ is a strongly compact cardinal and F is a κ-complete filter over
some set S. Consider the Lκ,κ-theory, T ′, of the structure ⟨S ∪ P(S),∈, X⟩X⊆S , where X is a
constant symbol for each subset of S. Adding a new constant symbol c and letting T denote T ′

along with the sentence c ∈ X for every X ∈ F . Then every T0 ∈ [T ]<κ has a model, since F
is κ-complete. Let M |= T , and let U = {X ⊆ S | M |= c ∈ X}. Trivially, U is an ultrafilter
extending F , to see that U is κ-complete, if {Xα | α < γ} ⊆ U , then M |=

∧
α<γ c ∈ Xα, so⋂

α<κXα ∈ U as well.
(2)→(1): Suppose that T is a κ-satisfiable Lκ,κ theory. Then for each s ∈ [T ]<κ there is a

model, Ms. Consider the filter on [T ]<κ generated by {{s ∈ [T ]<κ | φ ∈ s} | φ ∈ T}, it is not
hard to check that this filter is κ-complete, so it extends to an ultrafilter U . Then

∏
s∈[T ]<κ Ms/U

is a model of T , since for each φ ∈ T , the set {s | Ms |= φ} ⊇ {s | φ ∈ s} ∈ U .

We denote by Pκ(X) the set [X]<κ.11

Definition 6.3. A filter U over Pκ(X), is fine if for every x ∈ X, {s ∈ Pκ(X) | x ∈ s} ∈ U .

Definition 6.4. We say that κ is λ-compact if there is a fine κ-complete ultrafilter over Pκ(λ).

Theorem 6.5. κ is strongly compact if and only if it is λ-compact for all λ ≥ κ.

Proof. To prove that κ is strongly compact, let T be an Lκ,κ-theory of size λ and let U be a
fine κ-complete ultrafilter on Pκ(T ), then for each s ∈ Pκ(T ) fix some Ms |= T0, and it is easy
to check that

∏
s∈Pκ(T )Ms/U |= T . In the other direction, note that if λ ≥ κ, then

{{s ∈ Pκ(λ) | α ∈ s} | α < λ}

is a filter base for a κ-complete filter, so by (2) in Theorem 6.2, κ is λ-compact.
11Why yes, it is unfortunate that we have two ways to denote the same set.
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Theorem 6.6. κ is strongly compact if and only if for every λ there is an elementary j : V → M
such that crit(j) = κ, Mκ ⊆ M , and there is some X ∈ M such that M |= |X| < j(κ) and
j“λ ⊆ Y .

Proof. Suppose that κ is strongly compact and λ ≥ κ, otherwise there is nothing to check, let
M = Ult(V,U) where U is a fine measure on Pκ(λ). It is not hard to check that Mκ ⊆ M
as in Proposition 3.18 and crit(j) = κ. Let X = [id], then for all α < λ, since U is fine,
{s ∈ Pκ(λ) | α ∈ s} ∈ U , so α ∈ X. However, since {x ∈ Pκ(λ) | |x| < κ} = Pκ(λ) ∈ U , it
means that M |= |X| < j(κ).

In the other direction, suppose that j : V → M is such an embedding, let

U = {A ⊆ Pκ(λ) | X ∩ Pj(κ)(j(λ))M ∈ j(A)},

it is not hard to verify that U is a fine κ-complete measure on Pκ(λ).

Exercise 6.7. If j is as above, then λ < j(κ).

We say that j as in the theorem is a λ-strongly compact embedding.
Exercise 6.8. j : V → M is a λ-strongly compact embedding if and only if for every Z ⊆ M such
that |Z| = λ, there is some Y ∈ M for which M |= |Y | < j(crit(j)) and Z ⊆ Y .

One is tempted to expect that strongly compact are superstrong, or at least Woodin, or at
least strong. This, however, is not provable.
Fact 6.9. It is consistent, relative to suitable large cardinal axioms, that the least strongly
compact cardinal is the least measurable cardinal. In particular, it is consistent that o(κ) = 1
while κ is strongly compact. However, if a strongly compact cardinal exists, then for every λ,
there is an inner model M such that {α | M |= α is measurable} maps onto λ. In fact, much
more is true. There is an inner models with infinitely many Woodin cardinals.

6.1.1 Structural results of strongly compact cardinals

Theorem 6.10. Suppose that κ is measurable and it is the limit of strongly compact cardinals,
then κ is strongly compact.

Proof. Let D be a measure on κ concentrating on S = {α < κ | α is strongly compact}.12 Let
λ ≥ κ be some cardinal and Uα a fine measure on Pα(λ) for α ∈ S. We define a fine measure,
U , on Pκ(λ) by

U = {X ⊆ Pκ(λ) | {α ∈ S | X ∩ Pα(λ) ∈ Uα} ∈ D}.
It is not hard to check that U is a κ-complete ultrafilter on Pκ(λ). It is fine, since for every
ξ < λ and α ∈ S, {s ∈ Pα(λ) | ξ ∈ s} ∈ Uα, so {s ∈ Pκ(λ) | ξ ∈ s} ∈ U .

The following theorem is due to Magidor and Shelah and shows that even at singular limits,
strongly compact cardinals have an effect on the universe.
Theorem 6.11. Suppose that λ is a singular limit of strongly compact cardinals. Then λ+ has
the tree property.

The following theorem is due to Solovay which shows how the continuum function is affected
by strongly compact cardinals.
Theorem 6.12. Suppose that κ is a strongly compact cardinal. Then SCH holds above κ.
Namely, if λ > κ is a singular cardinal, then λcf(λ) = 2λ.

12Note that D might not be a normal measure.
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6.2 Supercompact cardinals

Definition 6.13. We say that a measure U on Pκ(λ) is normal if whenever f : Pκ(λ) → λ is a
choice function, then there is A ∈ U such that f is constant on A.

Exercise 6.14. U is normal on Pκ(λ) if and only if whenever {Xα | α < λ} ⊆ U ,

△
α<λ

Xα =
{
x ∈ Pκ(λ)

∣∣∣∣∣ x ∈
⋂

α∈x

Xα

}
∈ U.

Definition 6.15. We say that κ is a λ-supercompact cardinal if and only if there is a fine and
normal κ-complete ultrafilter on Pκ(λ). If κ is λ-supercompact for all λ ≥ κ, we say that κ is
supercompact. We will refer to such ultrafilters as (λ-)supercompact measures.

Easily, if κ is supercompact, then κ is strongly compact. Let us study a few structural
consequences of ultrapowers by supercompact measures.

Proposition 6.16. Let U be a supercompact measure on Pκ(λ), let M = Ult(V,U) and j = jU .
Then the following hold:

1. [id] represents j“λ in M .

2. X ∈ U if and only if j“λ ∈ j(X).

3. Mγ ⊆ M if and only if j“γ ∈ M .

Proof. For (1), suppose that γ < λ, since U is a fine measure, j(γ) ∈ [id], since it is a choice
function from {s ∈ Pκ(λ) | γ ∈ s}. On the other direction, if [f ] ∈ [id], then f must be a choice
function by normality, so it is a constant function into λ, so [f ] = j(γ) for some γ < λ.

Note that (2) follows immediately from (1) and the definition of ultrapowers.
To see (3) holds, note that one direction is trivial, so it is enough to show that if j“γ ∈ M ,

then Mγ ⊆ M . For this, let h be a function representing j“γ, and let {[fα] | α < γ} ⊆ M .
We define f such that f(x) is a function, dom f(x) = h(x) and f(x)(i) = fh(x)(i). Then f
represents a function with doing [h] = j“γ and [h](α) = [fα]. That is, {[fα] | α < γ}.

Exercise 6.17. Let U be a supercompact measure on Pκ(λ), then x 7→ otpx represents λ and
x 7→ x ∩ κ represents κ.

Exercise 6.18. If U is a supercompact measure on Pκ(λ), then [f ] = j(f)(j“λ) in Ult(V,U).

Corollary 6.19. For κ ≤ λ the following are equivalent:

1. κ is λ-supercompact.

2. There exists j : V → M such that crit(j) = κ, Mλ ⊆ M , and j(κ) ≥ λ.

In particular if κ is |Vκ+α|-supercompact, then κ is α-strong. Therefore supercompact cardinals
are strong, and in particular Vκ ≺Σ2 V .

Remark. When working in ZF the two most common definitions of supercompactness are
either the existence of supercompact measures, or a formulation based on embeddings: κ is
supercompact if for all α there is some β ≥ α and an elementary embedding j : Vβ → N with
N transitive, such that crit(j) = κ, j(κ) > α, and NVα ⊆ N . It is consistent (relative to
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significantly weaker assumptions than supercompactness) that ω1 is supercompact if we use the
measures, but critical points (of these sort of embeddings) are never successor cardinals, and so
in that sense the definition via measures in a deep sense “the wrong definition” in a choiceless
context.

Theorem 6.20. Suppose that κ is 2κ-supercompact, then it is not the first measurable cardinal.

Proof. Let j : V → M be a 2κ-supercompact embedding and let U = der(j), then U ∈ M , and
therefore M |= κ is measurable. In particular, {α < κ | α is measurable} ∈ der(j).

Exercise 6.21. Suppose that κ is a supercompact cardinal, then κ is a limit of Woodin cardinals.

Exercise 6.22. Suppose that κ is 2κ-supercompact, then there is a normal measure on κ concen-
trating on superstrong cardinals.

Fact 6.23. It is consistent, relative to the existence of a supercompact cardinal, that the least
supercompact cardinal is also the least strongly compact cardinal. This is the essence of Magi-
dor’s identity crisis of strong compactness. It is still open whether or not the two large cardinal
axioms are equiconsistent or not.

Magidor proved the following interesting equivalence to supercompactness.

Theorem 6.24. The following are equivalent:

1. κ is supercompact.

2. For every β > κ there is α < κ and an elementary j : Vα → Vβ with j(crit(j)) = κ.

Proof. Suppose that κ is supercompact and β > κ. Let j : V → M be a |Vβ|-supercompact
embedding, then j ↾ Vβ : Vβ → V M

j(β) is an elementary embedding inside M , so

M |= ∃α < j(κ), i : Vα → Vj(β), i(crit(i)) = j(κ),

so by elementarity,
V |= ∃α < κ, i : Vα → Vβ, i(crit(i)) = κ.

In the other direction, letting β > κ and letting α′ < κ such that j : Vα′ → Vβ+ω with
crit(j) = δ and j(δ) = κ. By elementarity, α′ = α + ω with j(α) = β. Since P(Pδ(α)) ∈ Vα′

and j“α ∈ Pκ(β), we can define

U = {X ⊆ Pδ(α) | j“α ∈ j(X)}.

This is a supercompact measure on Pδ(α), therefore j(U) is a supercompact measure on
Pj(δ)(j(α)), that is, a supercompact measure on Pκ(β).

Theorem 6.25. Let κ be a supercompact cardinal. There exists f : κ → Vκ such that for every
x and λ ≥ κ, | tcl(x)|, there is a supercompact measure on Pκ(λ), U , such that jU (f)(κ) = x.

We call such f a Laver function (or Laver diamond).

Proof. Suppose this is false. Then for every f : κ → Vκ there is a least λf ≥ κ and x such that
| tcl(x)| ≤ λf and there is no supercompact measure, U , on Pκ(λf ) such that jU (f)(κ) = x. Let
µ > sup{λf | f : κ → Vκ} and let j : V → M be a µ-supercompact embedding.
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Letting φ(g, δ) denote the statement that for some cardinal α, g : α → Vα and δ is the least
for which there is some x such that | tcl(x)| ≤ δ and no supercompact measure, U , on Pα(δ)
satisfies that jU (g)(α) = x. Namely, φ is the statement that g is not a Laver function and that
δ is the smallest witness for that.

As M is the target of a µ-supercompact embedding, Mµ ⊆ M and so M |= φ(f, λf ) for all
f : κ → Vκ. Define A = {α < κ | ∀f : α → Vα∃λf φ(f, λf )}, then κ ∈ j(A), and in particular
|A| = κ. Define f : κ → Vκ to be f(α) = xα if xα is a witness for φ(f ↾α, λf↾α) when α ∈ A and
otherwise f(α) = ∅.

In M , letting x = j(f)(κ), then by elementarity x must be a witness that φ(f, λf ) holds in
M . However, letting U = {X ∈ Pκ(λf ) | j“λf ∈ j(X)} be the derived supercompact measure.
Then j factors through Ult(V,U). However, jU (f)(κ) = j(f)(κ) = x, which is a contradiction
to the assumption that x was a witness for φ(f, λf ).

Remark. Laver diamonds are very useful when using supercompactness in forcing. We can use
them to “predict” possible larger objects, so that the iteration is done “only” up to κ, but the
supercompactness allows us to capture much larger objects.

6.3 Extendibility

Definition 6.26. We say that κ is an η-extendible cardinal if there is some β and an elementary
embedding j : Vκ+η → Vβ with crit(j) = κ and η < j(κ). If κ is η-extendible for all η, then we
say that it is an extendible cardinal.

Exercise 6.27. If κ is 1-extendible, then o(κ) > 1.

Theorem 6.28. If κ is extendible, then κ is supercompact.

Proof. Suppose that κ is extendible and let λ be any cardinal, then there is an embedding
j : Vλ → Vβ witnessing that κ is λ + 1-extendible, so in particular j(κ) > λ, and therefore we
can define an ultrafilter over Pκ(λ) by U = {X ⊆ Pκ(λ) | j“λ ∈ j(X)}.

Since crit(j) = κ this ultrafilter is κ-complete, and it is fine as for each α < κ, j(α) ∈ j“λ, and
therefore j“λ ∈ j({s ∈ Pκ(λ) | α ∈ s}). To see that U is a normal measure, let F : Pκ(λ) → λ
be a choice function and let α be such that j(F )(j“λ) = j(α), then {s ∈ Pκ | F (s) = α} ∈ U ,
and so F is constant on a large set, and so U is a supercompact measure.

Exercise 6.29 (*) . Show that if κ is supercompact and 1-extendible, then κ is a limit of super-
compact cardinals.

Definition 6.30. We write Ln
κ,λ to denote the infinitary nth order logic which allows quantifica-

tion over variables up to order n and in blocks of < κ variables at a time, as well as conjunctions
of length < λ.

Theorem 6.31. The following are equivalent:

1. κ is extendible.

2. Ln
κ,κ is strongly compact for all n ≥ 1.

3. L2
κ,κ is strongly compact.
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Proof. Suppose that κ is extendible and let T be a κ-satisfiable Ln
κ,κ-theory, and we may assume

that Ln
κ,κ is coded entirely within Vκ, and so it is not changed by j with critical point κ.

Let η be large enough limit ordinal such that Vη |= “T is κ-satisfiable”. And let j : Vη → Vβ

be an embedding witnessing that κ is extendible. Then by elementarity j(T ) is j(κ)-satisfiable
in Vβ, so j“T must have a model in Vβ, since |j“T | < η < j(κ). Let M ∈ Vβ be a model for j“T ,
since β is a limit ordinal, Pn(M)Vβ = Pn(M), and therefore the nth order truth is the same in
V and in Vβ. Since j induces a translation between T and j“T , M |= T , as wanted.

The next implication is trivial, so it remains to show that if L2
κ,κ is strongly compact, then

κ is extendible. Towards that, let η be an ordinal and let T be the L2
κ,κ theory of the structure

⟨Vκ+η,∈, x⟩x∈Vκ+η , adjoined with constant symbols cα for α ≤ κ + η and the sentences cα < κ
and cα < cβ for α < β ≤ κ + η. It is easy to see that T is κ-satisfable, by simply interpreting
the relevant cα inside Vκ+η.

Let M be a model of T , then M is well-founded, as that is a second-order sentence which is
true in Vκ+η (or an Lω1,ω1-sentence which is true there). Let σ be the Π1 sentence that for any
transitive set X, X |= σ if and only if X = Vα for some α. Then Vκ+η satisfies the second-order
sentence saying that there are cofinally many transitive sets satisfying σ or else there is a largest
one and every set is a subset of it, depending on whether or not η is a limit ordinal.

Therefore the transitive collapse of M is of the form Vβ for some ordinal β. The map
j : Vκ+η → Vβ given by mapping each x ∈ Vκ+η to the interpretation of its constant is elementary,
and for all α < κ it is easy to see that j(α) = α by an Lκ,κ formula which defines α. However,
j(κ) > κ+ η, since the constants cα must be interpreted as distinct ordinals below j(κ).

Exercise 6.32. If κ is extendible, then there is a proper class of inaccessible cardinals. In fact,
{λ | Vκ ≺ Vλ} contains unboundedly many inaccessible cardinals. (Hint: If j : Vη → Vβ witnessing
the extendibility of κ, what can you say about j(κ)?)

Theorem 6.33. If κ is extendible, then Vκ ≺Σ3 V .

Proof. Let ψ(u, x) be a Π2 formula, that is ∀y∃zφ(u, x, y, z) where φ is a ∆0-formula. Let
a ∈ Vκ. If Vκ |= ∃xψ(a, x), then there is some b ∈ Vκ such that Vκ |= ψ(a, b). Since κ is
extendible, and therefore supercompact, by Corollary 6.19, Vκ ≺Σ2 V , so V |= ψ(a, b) and
therefore V |= ∃xψ(a, x) as wanted.

In the other direction, suppose that V |= ∃xψ(a, x) and let b be a witness for that, then we
can find large enough inaccessible η such that b ∈ Vη and Vκ ≺ Vη. Since ψ is a Π2 formula
and η is inaccessible, Vη ≺Σ1 V and so ψ is downwards absolute to Vη. In particular, since
Vη |= ψ(a, b), it holds that Vη |= ∃xψ(a, x), and so Vκ |= ∃xψ(a, x) as wanted.

Definition 6.34. We say that an cardinal λ is Σn-correct if Vλ ≺Σn V .

We saw that inaccessible cardinals are Σ1-correct, strong cardinals are Σ2-correct, and ex-
tendible are Σ3-correct.

Exercise 6.35. Show that ZFC proves that there is a proper class of cardinals which are Σn-correct
for all n < ω.

Exercise 6.36. If λ is a Σ1-correct cardinal, then ℶλ = λ, i.e. |Vλ| = λ.

Exercise 6.37. The smallest Σ2-correct cardinal is larger than the smallest measurable (if it exists).

Exercise 6.38. The statement “j : Vα → Vβ is an elementary embedding with crit(j) = κ” can be
expressed as a Σ2-formula with α, β, κ as parameters.
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While both strong cardinals and supercompact cardinals were, in principle, defined by re-
quiring unboundedly many embeddings from V → M with certainly properties, we found out
that these can be restated in terms of ultrafilters and embeddings, which made them into com-
binatorial statements. Extendible cardinals already talk about embeddings between sets, rather
than embeddings between proper classes, so their existence is easily seen as formulated by a
first-order statement. However, for a very long time it was open as to whether or not we can
formulate extendibility in terms of measures or extenders. Quite recently, Goldberg and Bagaria
gave (independently) a positive answer.

Theorem 6.39. κ is extendible if and only if there is a proper class of Σ2-correct cardinals, λ,
such that there is a supercompact measure concentrating on {s ∈ Pκ(λ) | otp(s) is Σ2-correct}.

Proof. Suppose that κ is extendible and λ is a Σ2-correct cardinal, let j : Vλ+1 → Vλ′+1 be
an elementary embedding with crit(j) = κ. Since λ is Σ2-correct, it is also Σ2-correct inside
Vj(κ), since j(κ) is Σ2-correct. So j“λ ∈ {s ∈ Pj(κ)(j(λ)) | otp(s) is Σ2-correct}. Therefore the
ultrafilter on Pκ(λ) derived from j“λ is a supercompact measure with the wanted property.

In the other direction, if Pκ(λ) carries a supercompact measure as in the hypothesis, we
show that κ is γ-extendible for all γ < λ. Therefore, if there are unboundedly many such λ, κ is
extendible. Fix such measure U and let j : V → M = Ult(V,U) be the ultrapower embedding.
Since Mλ ⊆ M and λ is Σ2-correct, |Vλ| = λ, and therefore j ↾ Vλ ∈ M .

Moreover, as U concentrates on things with Σ2-correct order type and x 7→ otpx is rep-
resenting λ, M |= “λ is Σ2-correct”. So in V M

j(κ) it holds that κ is α-extendible for all α < λ,
which is something that is expressible entirely in Vλ = V M

λ . Since λ was originally Σ2-correct,
this is true in V as wanted.

Fact 6.40 (The HOD Dichotomy). Suppose that κ is an extendible cardinal. Then exactly
one of the two following holds.

1. If δ > κ is singular, then δ is singular in HOD and δ+ = (δ+)HOD.

2. If δ > κ is a regular cardinal, then it is measurable in HOD.

This, in a deep sense, is a covering lemma for HOD. If 0# exists, then every regular cardinal
is inaccessible in L; if 0# does not exist, then every singular cardinal is singular in L and the
successor is computed correctly. Woodin proved the HOD Dichotomy and stated the HOD
Hypothesis as saying that the first option holds, and the HOD Conjecture as the statement that
the HOD Hypothesis is in fact provable from ZFC.

36



Chapter 7

Huge parallels of strength

7.1 Huge cardinals

There is a deep parallel between supercompact cardinals and strong cardinals. If we look at λ
such that |Vλ| = λ, then being a λ-strong embedding is a closure under a very specific sequence
of length λ, whereas being a λ-supercompact embedding is a closure under all λ-sequences.
There are other deep relationship between the two notions being somewhat dual, and we will
discuss them later in this chapter.

But, if supercompactness is a “stronger version” of strongness, what would be the equivalent
of superstrong cardinals, then?

7.1.1 Huge cardinals

Definition 7.1. We say that κ is a huge cardinal if there exists an elementary j : V → M such
that crit(j) = κ and M j(κ) ⊆ M . We call such an embedding a huge embedding.

This definition is in fact local. To be a strong or a supercompact cardinal, many embeddings
are needed, but to be a superstrong or a huge cardinal you only need the one embedding.

Exercise 7.2. If κ is a huge cardinal and j is a witnessing embedding, then j is a superstrong
embedding and j(κ) is inaccessible.

Exercise 7.3 (*) . If κ is a huge cardinal and j is a witnessing embedding, then j(κ) is measurable.

Exercise 7.4. Suppose that j : V → M is elementary with crit(j) = κ and Mλ ⊆ M , then
{X ⊆ Pκ(λ) | j“λ ∈ j(X)} is a supercompact measure.

Proposition 7.5. If κ is huge and j is a huge embedding, then κ is <j(κ)-supercompact.
Namely, for all λ < j(κ), Pκ(λ) carries a supercompact measure.

Proof. Apply Exercise 7.4 to derive supercompact measures on Pκ(λ) and note that these are
all in Vj(κ).

Theorem 7.6. If κ is huge, then in Vκ there is a proper class of supercompact cardinals.

Proof. Let j : V → M be a huge embedding, then Vj(κ) |= κ is supercompact, since j is also a
superstrong embedding, M |= “Vj(κ) |= There is a supercompact cardinal”. Therefore, the set
{α < κ | Vκ |= α is supercompact} ∈ der(j).
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In the case of superstrong cardinals, we derived a superstrong extender and showed that
by Σ2-correctness, the least superstrong is below the least strong cardinal. If we can derive a
“local object” from the huge embedding, this will allow us to conclude that the least huge is
below the least supercompact.

Definition 7.7. We say that an ultrafilter U on P(λ) is a huge measure (on λ) if it satisfies:

(Fine) For all α < λ, {x ∈ P(λ) | α ∈ x} ∈ U .

(Normal) For all {Xα | α < λ}, △α<λXα = {x ∈ P(λ) | x ∈
⋂

α∈xXα} ∈ U .

Theorem 7.8. For an uncountable cardinal κ, κ is a huge cardinal if and only if there is some
λ and a κ-complete huge mesaure on P(λ) concentrating on {x ∈ P(λ) | otp(x) = κ}.

Proof. Suppose that κ is a huge cardinal and let j be a huge embedding, setting λ = j(κ), then
U = {X ∈ P(λ) | j“λ ∈ X}. Just like the case of deriving strong and supercompact measures,
U is a huge measure, and j({x ∈ P(λ) otp(x) = κ}) = {x ∈ P(j(λ)M | otp(x) = j(κ) = λ},
since j“λ has order type λ, the measure is as wanted.

In the other direction, let M = Ult(V,U) and let j = jU . By normality, [id] = j“λ,13 and so
Mλ ⊆ M much like in the proof of Proposition 6.16. Moreover, λ = otp(j“λ∩ j(λ)), therefore λ
is represented by x 7→ otpx, and since U concentrates on {x ∈ P(λ) | otp(x) = κ}, the function
is equivalent to cκ(x) = κ. That is to say, j(κ) = λ, so j is a huge embedding.

Corollary 7.9. The statement “κ is a huge cardinal” is a Σ2 statement. Therefore “There
exists a huge cardinal” is a Σ2 sentence, and so the least huge cardinal is smaller than the least
supercompact and least strong cardinal.

7.1.2 Weaker and stronger variations

Let us visit some definitions related to huge cardinals. In all cases we will define the cardinal,
and without mention, the embedding that witnesses property “x” will be called x-embedding.

Definition 7.10. We say that κ is an almost huge cardinal if there is an elementary embedding
j : V → M with crit(j) = κ and M<j(κ) ⊆ M .

Exercise 7.11. If κ is almost huge, then κ is superstrong and j(κ) is inaccessible.

We want to show that huge cardinals are stronger than almost huge cardinals, which sounds
like a reasonable thing. However, huge measures will not be of any particular help, since they
capture hugeness, and we are just on the precipice of hugeness, but not quite there.

Definition 7.12. Suppose that κ ≤ λ and for each κ ≤ γ < λ, Uγ is a supercompact measure
on Pκ(γ). We say that ⟨Uγ | κ ≤ γ < λ⟩ is a coherent sequence if and only if for every
κ ≤ γ ≤ δ < λ,

Uδ ↾ γ = {{x ∩ γ | x ∈ X} | X ∈ Uδ} = Uγ .
14

To simplify the notation, we will write jγ to denote jUγ in the context of such a coherent
sequence of measures.

13Note that here id : P(λ) → P(λ).
14We say that Uγ is the projection of Uδ to γ in this case.
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Exercise 7.13. If ⟨Uγ | κ ≤ γ < λ⟩ is a coherent sequence of supercompact measures, then there
are embeddings kγ,δ : Ult(V,Uγ) → Ult(V,Uδ) such that jδ = kγ,δ ◦ jγ . Moreover, these factor
embeddings are given by kγ,δ([f ]Uγ ) = [f ◦ (x 7→ x ∩ γ)]Uδ

and jγ(κ) > crit(kγ,δ) ≥ γ.

Theorem 7.14. κ is almost huge if and only if there exists an inaccessible cardinal λ > κ and
a coherent sequence of supercompact measures ⟨Uγ | κ ≤ γ < λ⟩ such that whenever γ < λ and
γ ≤ α < jγ(κ), there is some δ such that γ ≤ δ < λ such that kγ,δ(α) = δ.

Proof. If κ is almost huge, let j : V → M witness this, then λ = j(κ) is inaccessible and setting
Uγ = {X ⊆ Pκ(γ) | j“γ ∈ j(X)} is a coherent sequence of supercompact measures. Suppose
that γ < λ and f : Pκ(γ) → κ represents α as in the condition. Since otp([id]Uγ ) = γ, then
otp(j(f)(j“γ)) = δ ≥ γ and δ < j(κ) = λ. Now we have that otp(j(f)(j“δ ∩ j(γ))) = δ, so
kγ,δ([f ]Uγ ) = δ by the definition of the factor embedding of ultrapowers.

In the other direction, suppose that ⟨Uγ | κ ≤ γ < λ⟩ is a coherent sequence of supercompact
measures with the wanted property. As λ is inaccessible, the direct limit of the system is well-
founded, M , and let j : V → M be the limit embedding with kγ : Ult(V,Uγ) → M the factor
embedding. It is not hard to check that κ is the critical point of j and that crit(kγ) > γ. Let
us verify that j is an almost huge embedding.

Since γ < |jγ(κ)| < (2γ<κ)+ < λ, and j(κ) = kγ(jγ(κ)) it follows immediately that j(κ) ≥ λ.
In the other direction, suppose that β < j(κ), then there is some γ such that kγ(α) = β. Since
β < kγ(jγ(κ)) = j(κ), it must be that α < jγ(κ). If α ≤ γ, then kγ(α) = α = β < λ. Otherwise,
there is some δ > γ such that kγ,δ(α) = δ, but

j(κ) = kδ(kγ,δ(jγ(κ))) > kδ(kγ,δ(α)) = kδ(δ) = δ.

Therefore α ≤ δ < jδ(κ) < |(2δ<κ)+|V < λ.
Finally, let us check that M<λ ⊆ M . If β < λ and {xα | α < β} ⊆ M then there is

some γ > β and yα ∈ Ult(V,Uβ) such that kβ(yβ) = xβ. However, Ult(V,Uβ) is closed under
γ-sequences, so in particular {yα | α < β} ∈ Ult(V,Uβ) and since β < crit(kγ), we have that

kγ({yα | α < β}) = {kγ(yα) | α < β} = {xα | α < β} ∈ M.

The obvious question, now, is whether or not the notion of almost huge is actually equivalent
to that of a huge cardinal. Is it possible, perhaps, that there is some continuity at play?

Theorem 7.15. If κ is huge, then there is a normal measure on κ concentrating on almost
huge cardinals.

Proof. Let j : V → M be a huge embedding and let λ = j(κ). We can derive a coherent sequence
of supercompact measures from j, as in Theorem 7.14, then this sequence is in M , and therefore
M |= “κ is almost huge”. In particular, {α < κ | α is almost huge} ∈ der(j).

Definition 7.16. We say that κ is a superhuge cardinal if for every λ > κ there is a huge
embedding j with crit(j) = κ and j(κ) > λ.

Clearly, a superhuge cardinal is supercompact. But we can say much more than that.

Theorem 7.17. If κ is superhuge, then κ is extendible and there is a normal measure on κ
which concentrates on extendible cardinals.
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Proof. Let η > κ be an ordinal and let j : V → M be a huge embedding with j(κ) > η. Since
j(κ) is inaccessible, |Vη| < j(κ). Therefore j ↾ Vη ∈ M , moreover, j ↾ Vη is an embedding
Vη = V M

η → V M
j(η). Therefore,

M |= ∃β∃i : Vη → Vβ, crit(i) = κ, i(κ) > η.

Since this statement is a Σ2 statement in η and κ, and since j(κ) is supercompact in M , and
therefore Σ2-correct, V M

j(κ) satisfies the statement. However, since V M
j(κ) = Vj(κ), this is true in

V , and therefore κ is η-extendible in V . Therefore κ is extendible in V .
The argument above shows that κ is η-extendible for all η < j(κ), Vj(κ) |= “κ is extendible”.

In particular, {δ < κ | Vκ |= δ is extendible} ∈ der(j). Let δ be such cardinal, then j(δ) = δ
and Vj(κ) |= “δ is extendible”. To complete the proof we need to show that δ is extendible in
V , so for any η take a huge embedding i such that i(κ) > η, then Vi(κ) |= “δ is η-extendible”,
but since i is a huge embedding, Vi(κ) is computed the same in both models. Therefore δ must
be extendible, so indeed der(j) concentrates on extendible cardinals.

Definition 7.18. We say that κ is a n-huge cardinal if there is an elementary embedding
j : V → M such that crit(j) = κ and M jn(κ) ⊆ M . We define almost n-huge and super-n-huge
cardinals in the analogous way to almost huge and superhuge cardinals.

All of these definitions make sense in the case where n = 0, where we simply get measurable
cardinals.

Theorem 7.19. If κ is an almost 2-huge cardinal, then in Vκ there is a proper class of superhuge
cardinals.

Proof. Let j : V → M be an almost 2-huge embedding. In M we can still derive the huge
measure on j(κ) to show that κ is huge and has a huge embedding mapping it to j(κ). Therefore,
in M it is true that j(κ) has a huge measure. So in V not only κ has a huge measure, there is
a set H ∈ der(j) such that if η ∈ H, then there is a huge measure on κ concentrating on sets of
order type η. Pick any such η, then the aforementioned huge measure on κ is also in M . So in
M it is true that κ is in the set

{λ < j(κ) | There is a huge measure on λ concentrating on sets of order type η}.

In particular, there is a set in der(j) of possible targets for huge embeddings with critical point
η. So, Vκ |= η is superhuge.

Exercise 7.20. κ is (n + 1)-huge with an embedding j : V → M with jn+1(κ) = λ if and only
if there are κ = λ0 < · · · < λn = λ and there is a huge measure on λ concentrating on the set
{x ∈ P(λ) | otp(x ∩ λi+1) = λi}.

Exercise 7.21. κ is almost (n+1)-huge, then in Vκ there is a proper class of super-n-huge cardinals.

Definition 7.22. We say that κ is n-superstrong if there is an elementary embedding j : V → M
with crit(j) = κ and Vjn(κ) ⊆ M .

Exercise 7.23. The consistency of a (n + 1)-superstrong cardinal implies the consistency of many
n-huge cardinals. And an almost (n+ 1)-huge cardinal is also (n+ 1)-superstrong.
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7.2 Vopěnka’s Principle

Definition 7.24. We say that Vopěnka’s Principle (VP) holds if for every first-order language
L, if C is a proper class of L-structures, then there is one that elementarily embeds into another.

Exercise 7.25 (*) . VP implies that there is a proper class of extendible cardinals.

Theorem 7.26. If κ is almost huge, then Vκ |= VP.

The problem with the statement of VP is that it quantifies over classes. It is a second-order
statement. So when we write Vκ |= VP, we need to explain which classes are concerned here.
Luckily for us, we do not need to worry and we can just consider Vκ+1 as the collection of classes
in this case.15

Proof. Let j : V → M be an almost huge embedding with crit(j) = κ and suppose that A =
⟨Xα | α < κ⟩ is a proper class in Vκ of L-structures.

In M , we have j(A) = ⟨Xα | α < κ⟩ ∪ ⟨Xα | κ ≤ α < j(κ)⟩ as a sequence in Vj(κ). Then
j(j(A)) is now a sequence of length j2(κ), but j ↾ Xκ is an elementary embedding into Xj(κ).
Since Xκ ∈ Vj(κ), we have that |Xκ| < j(κ) and therefore j ↾Xκ ∈ M .

Therefore, letting S be the set of α < κ such that Xα embeds elementarily into some
Xβ ∈ j(A) for β < j(κ), we get that κ ∈ j(S), so in particular S is non-empty. Taking any
α ∈ S, since in V , there is some β < j(κ) such that Xα ≺ Xβ, and Xβ ∈ Vj(κ), it must be that
M satisfies the same. Namely, M satisfies that there is some β < j(κ) and Xα ∈ j(A) such that
Xα ≺ Xβ. By elementarity, there is such β < κ.

Definition 7.27. We say that κ is a Vopěnka cardinal if Vκ |= VP.

We can therefore rewrite the statement of Theorem 7.26 as “If κ is almost huge, then κ is
Vopěnka.” How do Vopěnka cardinals compare to the cardinals we have seen so far? We know
that they lie below the hugeness hierarchy, and above the extendible cardinals. But can we say
more? Yes. It turns out that Vopěnka cardinals are exactly “Woodin for supercompactness”
and “Woodin for extendible” cardinals.

Definition 7.28. We say that κ is an η-A-extendible cardinal if there is some β and an ele-
mentary embedding j : Vκ+η → Vβ with crit(j) = κ, j(κ) > η, and j(A ∩ Vκ+η) = A ∩ Vβ.

We say that κ is an η-A-supercompact cardinal if there is α < κ and an elementary embedding
j : Vα → Vη such that j(crit(j)) = κ and j(A ∩ Vα) = A ∩ Vη.

Exercise 7.29 (**) . The following are equivalent.

1. κ is Vopěnka.

2. For every A ⊆ Vκ there is some α < κ which is η-A-extendible for all η < κ.

3. For every A ⊆ Vκ there is some α < κ which is η-A-supercompact for all η < κ.

4. For every increasing f : κ → κ and R : κ → Vκ such that R(α) ⊆ Vf(α), there are α < β < κ
such that ⟨Vf(α),∈, {α}, R(α)⟩ embeds elementarily into ⟨Vf(β),∈, {β}, R(β)⟩.

As a corollary of this exercise, of course, we can replace “there is some” by “there are station-
arily many” or “there are unboundedly many”. An interesting fact is that this characterisation
of Vopěnka cardinals pre-dates Woodin cardinals by a number of years.16

15That means that we are allowing full second-order quantification here.
16Why yes, it does mean that Woodin cardinals are “Vopěnka for strongness” rather than the other way around.
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Definition 7.30. We say that κ is an η-C(n)-extendible cardinal if there is an elementary
embedding j : Vκ+η → Vβ with crit(j) = κ and j(κ) is Σn-correct. We say that κ is C(n)-
extendible if it is η-C(n)-extendible for all η. We define C(n)-supercompact, -strong, -measurable,
-superstrong, -huge, etc. in a similar way.

Exercise 7.31. If κ is a measurable (strong) cardinal, then it is C(n)-measurable (C(n)-strong) for
all n.

We will say that VP(Γ) holds, where Γ is a class of formulas (e.g. Σn or Σn when allowing
parameters), if whenever C is a class of structures in the same language which is definable by a
formula in Γ, then there is a structure in C which embeds elementarily into the other.

Fact 7.32. In the following list, each list enumerates equivalent statements.

1. (a) There exists an infinite ordinal.
(b) VP(Π0).
(c) VP(Σ1).

2. (a) There exists a proper class of infinite ordinals.
(b) VP(Π0).
(c) VP(Σ1).

3. (a) There exists a supercompact cardinal.
(b) VP(Π1).
(c) VP(Σ2).

4. (a) There exists a proper class of supercompact cardinals.
(b) VP(Π1).
(c) VP(Σ2).

5. (a) There exists a C(n)-extendible cardinal.
(b) VP(Πn+1).
(c) VP(Σn+2).

6. (a) There exists a proper class of C(n)-extendible cardinals.
(b) VP(Πn+1).
(c) VP(Σn+2).

The pattern in the fact above is due to the fact that a class is Σn+1-definable if and only if
it is Πn-definable.

Many structures can be interpreted as graphs in a natural way. So we can restate VP as
“There is no full embedding of Ord into Graph”. Namely, there is no sequence of graphs
⟨Gα | α ∈ Ord⟩ such that α < β if and only if there is a homomorphism Gα → Gβ, and any two
graphs on the sequence have at most one homomorphism between them.

The Weak Vopěnka Principle (WVP) states the dual statement. Namely, OrdOP does not
embed, in the same sense as above, into Graph. Wilson proved recently that WVP is equivalent
to its statement without the requirement that homomorphisms are unique, and it turns out to
be equivalent to the statement “Ord is Woodin”. Namely, every definable class A has arbitrarily
large A-strong cardinals. Or, if we want to think about this in terms of a second-order statement.

Fact 7.33. δ is a Woodin cardinal if and only if Vδ |= WVP.
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Chapter 8

Pushing it? Touching inconsistency

8.1 Kunen’s Inconsistency Theorem

Theorem 8.1 (Kunen’s Inconsistency Theorem). There is no non-trivial elementary em-
bedding j : V → V .

Before proving Kunen’s theorem, let us prove a weaker version due to Suzuki.

Proposition 8.2 (Suzuki). There is no definable non-trivial elementary embedding j : V → V .

Proof. Suppose that φ(x, y, z) defines an elementary embedding, jz, where z is a parameter.17

Let κz be the critical point of the embedding when z is used as a parameter, and let κ be
the smallest κz for z ∈ V . Then in V we have that κ is the minimal critical point given by
all the embeddings definable using φ. Picking z for which κz = κ, we have jz(κ) > κ and by
elementarity, jz(κ) is the minimal critical point given by all the embeddings definable using φ,
which is a contradiction.

Suzuki’s theorem gives us, immediately, that measurable, strong, supercompact, huge, and
any such cardinals, will always have to define embeddings into inner models. So there is no hope
to try and get some class-length sequence of extenders and use it to try and define an embedding
V → V . But Kunen’s theorem is stronger still. It is formalised in the expanded language ZFC(j),
where we add j as a symbol, add the axioms that j is an elementary embedding, and add all
the Replacement axioms for the expanded language.18

Proof of Kunen’s Inconsistency Theorem. Let j : V → M be a non-trivial elementary embed-
ding. We will prove that V ̸= M . Let λ = sup{jn(crit(j)) | n < ω}, then we will show that
j“λ /∈ M . Assume towards a contradiction that this is not the case. Firstly, note that j(λ) = λ,
and so j“λ ⊆ λ.

Let η be the least ordinal such that for some F : η → P(λ) we have that j“λ ∈ rng(j(F )).
Note that η must be a cardinal and that η ≤ 2λ, since if f : 2λ → P(λ) is a bijection, then j(f)
is a bijection from j(2λ) to j(P(λ)) = P(j(λ)) = P(λ), and so j“λ must be in rng(j(f)) in that
case.

17Recall that we can express full elementarity by Σ1-elementarity and a cofinal image, the latter is trivial in
the case of V → V .

18Alternatively, it can be seen as a theorem in a second-order set theory such as Kelley–Morse or von Neumann–
Gödel–Bernays.
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Fix F to be an injection from η to P(λ) as above, and let S = rng(F ) ⊆ P(λ). We define a
measure on S given by

U = {X ⊆ S | j“λ ∈ j(X)}.

Note that this is in fact a measure on η which we translated to S. Easily, U is an ω1-complete
measure, so we can take i = jU to be the ultrapower embedding i : V → Ult(V,U) = N .

Note the following facts are true:

1. i“λ = [id]U .

2. i“λ ∈ rng(i(F )).

3. For all α ≤ λ, α is represented by [A 7→ otp(A ∩ α)]U .

4. i ↾ λ+ 1 = j ↾ λ+ 1.

5. i“η+ /∈ N .

Since i“λ ∈ N , it follows that Nλ ⊆ N , and so we have that P(λ)N = P(λ)M = P(λ) and
that i is a λ-strong embedding. We will show that η = 2λ, and that i(η) = sup i“η. From
that a contradiction will follow: i“λ ∈ rng(i(F )), so for some α < η, i“λ ∈ rng(i(F ) ↾ i(α)) =
rng(i(F ↾ α)), and since i and j are the same up to λ, this is a contradiction to the minimality
to η.

To prove that η = 2λ, note that we already know that η ≤ 2λ, so if we can show that
i“2λ ∈ N , then by the final fact, 2λ < η+ and equality ensues. Note that if A ⊆ λ, then
A =

⋃
α<λA ∩ α, but since i(λ) = j(λ) = λ, we have that

i(A) = i

 ⋃
α<λ

A ∩ α

 =
⋃

α<j(λ)
i(A ∩ α) =

⋃
α<λ

i(A ∩ α).

In particular, i“P(λ) = {
⋃

α<λ i(A ∩ α) | A ∈ P(λ)}, but since P(λ)N = P(λ), this set must be
in N as well.

Finally, to show that i(η) = sup i“η, the fact that i“P(λ) ∈ N means that N2λ ⊆ N , and
therefore all enumerations of P(λ) exists in N . And therefore the cardinal 2λ is computed
correctly in N . In particular, i(η) = sup i“η. This completes the proof by contradiction, so
M ̸= V .

Exercise 8.3. Prove the facts from the above theorem.

There are a number of different proofs. Kunen’s original proof used ω-Jónsson algebras;
Woodin’s proof utilises a partition of {ξ < λ+ | cf(ξ) = ω} into crit(j)-many stationary sets,
and uses that to derive a contradiction. An additional proof by Zapletal utilises Shelah’s PCF
theory. These proofs are all distinct and provide us with various corollaries.

Corollary 8.4. If λ is an ordinal, then there is no elementary embedding from Vλ+2 to itself.

Corollary 8.5. If j : Vη → M , where η is a limit, then j“ supn<ω(jn(crit(j)) /∈ M .

Corollary 8.6. ω-huge cardinals are inconsistent.19

19There is a historical quirk where “ω-huge” meant “ω-superstrong” for a short period of time in the 1980s.
But we strictly rely on the definition of n-huge cardinals
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One must ask, then, how can there is an elementary embedding j : L → L, as is the case
if a measurable cardinal exist? Have we been deceived all of this time and large cardinals
are thoroughly inconsistent? The answer, of course, is that 0# is incredibly undefinable. We
cannot compute it in L itself, and in more general terms it really tells us that our universe is
significantly richer than the constructible universe.

One final corollary must be mentioned.
Corollary 8.7. In the definition of α-supercompact20 cardinal we do not need to require that
j(κ) > α.

Proof. If j : V → M is a α-supercompact embedding and j(κ) < α, then either there is some
n < ω for which jn(κ) > α and jn is also α-supercompact, or else this is never the case and
sup jn(κ) = λ ≤ α, which means that j“λ ∈ M .

8.2 The end of the road*

As the corollary above tells us, there cannot be any ordinal λ for which there is a non-trivial
j : Vλ+2 → Vλ+2. At least not when the Axiom of Choice is assumed. But what about something
weaker?
Definition 8.8. We say that λ is an I3 cardinal if there exists a non-trivial elementary embed-
ding j : Vλ → Vλ.
Remark. The name “I” comes from “inconsistency” as these were, allegedly, axioms that were
going to be inconsistent.
Proposition 8.9. Suppose that λ is an I3 cardinal and that j is a witnessing embedding, then
λ = supn<ω j

n(crit(j)).

Proof. If this is not the case, then λ′ = supn<ω j
n(crit(j)) < λ, in which case j“λ′ ∈ Vλ.

Exercise 8.10 (*) . If λ is an I3 cardinal, then λ is worldly.

There is an argument to be made that the large cardinal here is not λ, but rather crit(j).
Since really it is the critical point of an embedding with very strong closure properties, and
in the other cases the critical point of the embedding was the large cardinal. However, this is
slightly awkward to our theory, since this would imply that if j : Vλ → Vλ is an I3 embedding,
then all of jn(crit(j)) are also critical points of I3 embeddings.
Definition 8.11. Suppose that j : V → M is an elementary embedding, the critical sequence
of j is κ0(j) = crit(j), κn+1(j) = j(κn), and λ(j) = supn<ω κn(j). When the embedding is clear
from context we will omit it from the notation.

With this language we can recast the Kunen’s Inconsistency Theorem to say that j“λ(j) /∈ M
and that I3 is the limit of its critical sequence. Moreover, since I3 is λ(j) for any of its I3
embeddings, we can comfortably talk about I3 embeddings without needing to discuss the
cardinals in question.
Exercise 8.12. If j is an I3 embedding and κ = κ0(j), then der(j) concentrates on n-huge cardinals.
In particular {α < κ | ∀n < ω, α is n-huge} ∈ der(j).
Exercise 8.13. If λ is an I3 cardinal, then in Vλ there is a proper class of cardinals which are
super-n-huge cardinals for all n < ω.

20As well as strong, extendible, etc.
*Assuming the Axiom of Choice, anyway.
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8.2.1 LD algebras

Definition 8.14. Let j : Vλ → Vλ be an embedding and X ⊆ Vλ, define

j+(X) =
⋃

α<λ

j(X ∩ Vα).

Definition 8.15. If λ is an I3 cardinal, Eλ = {j | j : Vλ → Vλ is an elementary embedding}.

Exercise 8.16. If j, k : Vλ → Vλ are elementary embedding, then j+(k) and j ◦ k are elementary
embeddings Vλ → Vλ. Moreover, show that j+(j) ̸= j ◦ j whenever j is non-trivial.

We write j · k to denote the embedding j+(k). Then ⟨Eλ, ·⟩ satisfies the following identity:

j · (k · h) = (j · k) · (j · h).

Structures which satisfy this property are called left-distributive algebras, or LD-algebras for
short. We can also define this in a more abstract way. Let Tn be the set of words generated by
x1, . . . , xn and a binary operator ·, and let ∼ be the LD equivalence relation:

t1 · (t2 · t3) ∼ (t1 · t2) · (t1 · t3),

then Tn/∼ is called a free LD-algebra with n generators and we denote it by Fn.

Fact 8.17 (Laver). Let λ be an I3 cardinal and j ∈ Eλ a non-trivial embedding, then the
subalgebra generated by j is isomorphic to F1.

8.2.2 Even more inconsistent?

Definition 8.18. Let λ be a cardinal. We say that it is. . .
. . . an I2 cardinal if there is an elementary embedding j : V → M and Vλ = Vλ(j) ⊆ M .21

. . . an I1 cardinal if there is an elementary embedding j : Vλ+1 → Vλ+1.

. . . an I0 cardinal if there is an elementary embedding j : L(Vλ+1) → L(Vλ+1) with λ = λ(j).

A natural question at this point is to ask, is I2 actually stronger than I3, or can we somehow
extend an I3 embedding into the whole universe by deriving some extenders?

Theorem 8.19. If λ is an I2 cardinal and j is a witnessing embedding, then

{α < crit(j) | ∃i : Vλ → Vλ, crit(i) = α} ∈ der(j).

Proof. Let j : V → M be an I2 embedding with λ(j) = λ. Note that j′ = j ↾ Vλ satisfies
j′ : Vλ → Vλ, so it is an I3 embedding. However, j′ ⊆ Vλ, and so j(j′) ∩ Vλ = j′ · j′, in the sense
of Eλ. In particular, M |= λ is I3. It remains to show that κ is crit(i) for some i : Vλ → Vλ such
that i ∈ M . Let us denote by κn the cardinal κn(j) = jn(κ).

Let I = {i | i : Vα → Vβ for some α < β < λ, crit(i) = κ}. We define a partial order on I,
<, as the transitive closure of the relation

i < i′ ⇐⇒ i′ ⊆ i ∧ ∃n < ω, κn ∈ dom(i \ i′).
21This is, essentially, ω-superstrong, in terms of what we had seen before.
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Since ⟨κn | n < ω⟩ ∈ M and since Vλ ∈ M , both I and < are correctly defined in M .22 Since
M is transitive, both V and M agree on whether or not ⟨I,<⟩ is a well-founded set. However,
in V , ⟨j ↾ Vκn+1 | n < ω⟩ is a witness that < is ill-founded, so it must also be ill-founded in M .
Taking any such descending sequence ⟨in | n < ω⟩ ∈ M , and letting i =

⋃
n<ω ii, we have that

i : Vλ → Vλ is an I3 embedding with crit(i) = κ, so the conclusion follows.

Theorem 8.20. The following are equivalent for any pair κ < λ.

1. There is an I2 embedding, j : V → M , with κ = κ0(j) and λ = λ(j).

2. There is an I3 embedding, j : Vλ → Vλ with crit(j) = κ and whenever R ⊆ Vλ is a
well-founded relation, j+(R) is a well-founded relation.

Sketch of Proof. Assuming (1) the proof is straightforward, since we can take k : Vλ → Vλ to be
j ↾Vλ, in which case k+(R) = j(R), and so well-foundedness is preserved. In the other direction,
let j be an I3 embedding with the additional property. We define, for each n < ω, a measure
on P(κn):

Un = {X ⊆ P(κn) | j“κn ∈ j(X)}.

Letting Mn = Ult(V,Un), then for n ≤ m, there is a natural embedding kn,m : Mn → Mm

given by
kn,m([f ]Un) = [f ◦ (x 7→ x ∩ κn)]Um .

Moreover, crit(kn,m) ≥ κn and the embeddings satisfy that kn,m ◦ kℓ,n = kℓ,m. Finally, letting
M be the direct limit of {Mn, kn,m | n,m < ω} and let i be the limit embedding. It is not
hard to check that i is λ-strong with crit(i) = κ and κn(i) = κn. If M is ill-founded, however,
then there is a descending sequence of ordinals, each represented by some ⟨κnx , fnx⟩ in M .
Since | rng fnx | < κnx+1 ≤ κnx+1 , we can then define a relation R ⊆ Vλ which encodes this
well-ordering. By the fact that Mn is an ultrapower, and [fnx ]Unx

= jUnx
(j“κnx), we get that

j+(R) must be ill-founded as well. As j was chosen with j+ preserving well-foundedness, this
is not the case, so M is transitive and i is I2.

Corollary 8.21. I2 cardinals can be characterised in first-order logic.

Exercise 8.22. If j : Vλ+1 → Vλ+1 is an I1 embedding, then λ is an I2 cardinal and der(j) concen-
trates on critical points of I2 embeddings.

Finally, If j : L(Vλ+1) → L(Vλ+1) is an I0 embedding, then j ↾ Vλ+1 is very clearly and I1
embedding. But we can actually say more.

Fact 8.23. If there exists a non-trivial j : L1(Vλ+1) → L1(Vλ+1),23 then there exists many I1
cardinals.

Remark. It is worth pointing that under I0 axioms, the model L(Vλ+1) looks quite similar to
L(R) under strong determinacy assumptions. This lends itself to a very interesting and rich
structure in both set theoretic and topological fashions.

22Note that this is not j(I), but rather IM , where we reinterpret the definition with the same parameters, just
in M .

23Here L1(X) is simply Def(X), the set of definable subsets of X.
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Chapter 9

Beyond the inconsistency

9.1 Dropping the Axiom of Choice

We want to understand how large cardinals can extend and grow, even further, when the Axiom
of Choice is removed. Specifically, how much of Kunen’s Inconsistency Theorem holds if the
Axiom of Choice is removed? Clearly, Suzuki’s theorem still holds, and so any self-embedding
is still not going to be definable. But can we do more?

The problem, of course, is that we tend to measure consistency by comparing things to large
cardinal axioms. We started with, say, strongly compact cardinals, and decided that these are
“reasonable axioms”, and so we can prove the consistency of measurable cardinals. If we decided
that I2 is a reasonable large cardinal axiom, then we can prove the consistency of I3 cardinals.
But if we accept Kunen’s theorem as an upper limit, what would be the philosophical argument
towards accepting large cardinal axioms which refute Kunen’s theorem?

9.1.1 Ultrapowers without the Axiom of Choice

Theorem 9.1. Suppose that U is an ultrafilter on a set X. The following are equivalent.

1. Ult(V,U) satisfies the Axiom of Extensionality.

2. Ult(V,U) has a unique empty set.

3. If f is a surjective function onto X, then there is some A ∈ U and a function g with
dom g = A such that g ◦ f = id.

4. If {Sx | x ∈ X} is a family of non-empty sets, then there is some A ∈ U such that∏
x∈A Sx ̸= ∅.

5. Łoś’s theorem for Ult(V,U).

6. jU is elementary.

Proof. The implications (1)→(2) and (6)→(1) are trivial. The equivalence between each of the
pairs (3)–(4) and (5)–(6) are the standard proofs and do not rely on the Axiom of Choice.

(4) implies (5): the only non-trivial part of the proof is when Ult(V,U) |= ∃xφ([f ], x) in
producing g such that {i ∈ X | V |= φ(f(i), g(i))} ∈ U . For each i ∈ X, let Si be the set
of least-ranked witnesses, namely {t | φ(f(i), t)} ∩ Vαi , where αi is the least for which this is
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non-empty. Then there is some set A ∈ U for which
∏

i∈A Si ̸= ∅, pick some g in this product
and extend it to some function on X.

To complete the proof we need to establish the implication from (2) to any of (3), (4), (5),
or (6). Let us show that (2) implies (4). Let S : X → V be a function such that S(x) ̸= ∅ for
all x ∈ X. Note that in Ult(V,U) it must be that [S] ̸= [∅], and so Ult(V,U) |= ∃x(x ∈ [S]).
Therefore, there is some g such that Ult(V,U) |= [g] ∈ [S], and so by the very definition of the
ultrapower structure, A = {x ∈ X | g(x) ∈ S(x)} ∈ U , and therefore g ↾A ∈

∏
x∈A S(x).

Remark. It is consistent that a critical cardinal does not have any ultrapower embeddings
witnessing its criticality. It is also consistent that no embedding goes into a countably closed.24

It is also consistent for ω1 to be a measurable cardinal, and for a measurable cardinal to have
no normal measures, but it is easy to see that in either case these are not critical cardinals. In
fact, the least measurable cardinal can be the least Mahlo cardinal, or even the least inaccessible
cardinal.25

9.2 Beyond the inconsistency

Definition 9.2. We say that λ is a Kunen cardinal if there is a non-trivial j : Vλ+2 → Vλ+2
such that λ = λ(j).26 We say that j is a Kunen embedding if it witnesses that λ(j) is a Kunen
cardinal.

Easily now, if λ is a Kunen cardinal, then the Axiom of Choice must fail in Vλ+2. Quite
recently, Schlutzenberg proved the following fact.

Fact 9.3. If ZFC + I0 is consistent, then ZF is consistent with a Kunen cardinal. And if ZF is
consistent with a Kunen cardinal, then ZF + I0 is consistent as well.

This is an incredible breakthrough, and the first in many years in the study of choiceless
large cardinals. An interesting thing to note here is that the proof is not sufficient to conclude
that a Kunen cardinal implies the consistency of ZFC + I0.

Definition 9.4. We say that κ is a Reinhardt cardinal if it is the critical point of an elementary
embedding j : V → V .

Exercise 9.5. Proposition 8.2 is provable in ZF. In particular Reinhardt cardinals are not first-order
definable in ZF.

The consequence of this exercise is that when we talk about Reinhardt cardinals, we are must
fallback to one of the settings for Kunen’s Inconsistency Theorem. We will do that implicitly
from this point on. So if we say that Vη |= “There exists a Reinhardt cardinal”, we will mean
that in the context of ZF2, so the structure in question will be ⟨Vη,∈, Vη+1⟩.

Exercise 9.6. Let κ be a Reinhardt cardinal, and let j : V → V be a witnessing embedding, then
κn(j) is Reinhardt for all n < ω.

We will say, therefore, that κ and κ′ are distinct Reinhardt cardinals if they are critical
points of j and j′ respectively, with λ(j) ̸= λ(j′).

24Compare to Proposition 3.18.
25Interestingly, “ω1 is measurable” and “the least Mahlo cardinal is the least measurable” both are equiconsis-

tent with a single measurable cardinal. In contrast, if we require “the least measurable is the least inaccessible”,
the consistency strength goes up and is at least o(κ) = κ.

26This is not a standard term, and in some cases you will see it refer to the critical point of the embedding.
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Proposition 9.7. Let κ be a Reinhardt cardinal and let j be a witnessing embedding, then
der(j) concentrates on critical points of Kunen embeddings.

Proof. Let λ = λ(j), then j(λ) = λ, and therefore j(Vλ+2) = Vj(λ)+2 = Vλ+2, and in particular
j ↾Vλ+2 is a Kunen embedding. Since V satisfies that κ is a critical point of a Kunen embedding,
der(j) must concentrate of the set of such points. Note that this only tells us that λ has various
Kunen embeddings with critical points below κ.

If j is a Reinhardt embedding with minimal critical point and minimal λ, letting η > λ(j)
be an inaccessible cardinal,27 then j(η) = η and so in Vη it is still true that j ↾Vη is a Reinhardt
embedding, but by the choice and minimality, it must be that no Reinhardt embeddings go
beyond λ(j). Otherwise, there would be some embedding i such that i(crit(i)) > λ(j), but as a
Reinhardt embedding, i(crit(i)) must be inaccessible and there are no inaccessible cardinals in
Vη above λ(j).

It is tempting to think that Reinhardt cardinals, therefore, have a limit power over the
structure of the universe. This is not true. The following two facts, due to Gabe Goldberg,
show just how much power is hiding behind a Reinhardt cardinal
Fact 9.8. If there is a Reinhardt cardinal, then there is a proper class regular cardinals,28

moreover there is a proper class of measurable cardinals.29

Fact 9.9. If there is a Reinhardt cardinal, then SVC fails.30

Definition 9.10. We say that κ is a super-Reinhardt cardinal if for every α there is an embed-
ding j : V → V with crit(j) = κ and j(κ) > α.
Exercise 9.11. If there exists a super-Reinhardt cardinal, then there is a proper class of inaccessible
cardinals.
Theorem 9.12. If there is a super-Reinhardt cardinal, then there is a transitive model of ZF2
with a Reinhardt cardinal.

Proof. Let κ be a super-Reinhardt cardinal and let j : V → V be an embedding with crit(j) = κ,
and let δ be the least inaccessible cardinal above λ(j). Then in Vδ, j ↾ Vδ : Vδ → Vδ is an
elementary embedding with critical point κ, so κ is Reinhardt cardinal.

Exercise 9.13. Find a different proof the previous theorem. Specifically, if κ is a super-Reinhardt
cardinal, then there is some δ < κ such that Vδ has a Reinhardt cardinal.
Exercise 9.14 (*) . Show that if κ is a Reinhardt cardinal, then there is some j witnessing that
such that j ↾ Vλ(j) is not a Reinhardt embedding.
Definition 9.15. We say that a cardinal κ is an A-super-Reinhardt cardinal for a class A, if
there is are elementary embedding j : V → V with crit(j) = κ and j+(A) = A such that j(κ) is
arbitrarily large.
Definition 9.16. We say that κ is a totally Reinhardt cardinal if for every A ⊆ Vκ, Vκ |= “There
exists an A-super-Reinhardt cardinal”.
Exercise 9.17. If κ is totally Reinhardt, then κ is regular.

27There are many definitions of inaccessible cardinals, and they are not all equivalent. The standard one is
“Vκ |= ZF2”, or equivalently, “if x ∈ Vκ, then for all f : x → κ, sup rng f < κ”.

28Recall that ZF cannot prove the existence of uncountable regular cardinals, at least assuming a proper class
of strongly compact cardinals is consistent.

29In the sense that there exists a complete measure.
30Small Violations of Choice (SVC) states that there is a complete Boolean algebra which forces the Axiom of

Choice. In a sense, this implies that the universe is somehow “close” to being a model of ZFC.
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9.3 Berkeley cardinals

Definition 9.18. We say that an ordinal δ is proto-Berkeley if for every transitive set M such
that δ ∈ M , there exists an elementary embedding j : M → M with crit(j) < δ.

The problem with this definition is that if δ is a proto-Berkeley cardinal, then every ordinal
above δ is proto-Berkeley. Even restricting to cardinals will not make a difference. So, in a
sense, we need to capture the essence of the definition.

Theorem 9.19. Suppose that δ is the least proto-Berkeley cardinal, then for every transitive
set M such that δ ∈ M and every η < δ, there is some j : M → M such that η < crit(j) < δ.

Proof. Suppose that this is not the case. Let η be the least ordinal such that there is a transitive
set M with δ ∈ M and there is no j : M → M with η < crit(j) < δ. We will show that η is in
a proto-Berkeley cardinal, contradicting the minimality of δ.

Let N be a transitive set with η ∈ N and let X be tcl({⟨N,M, η⟩}). Then N , M , and η are
definable in X, and so if j : X → X is an elementary embedding, j(N) = N and j(M) = M .
In particular, j ↾ M : M → M , and therefore crit(j) < η. But since j ↾ N : N → N , this
means that j ↾ N is non-trivial on N . Therefore η is proto-Berkeley, and therefore we have a
contradiction.

Definition 9.20. We say that δ is a Berkeley cardinal if for every transitive set M such
that δ ∈ M and every η < δ, there exists an elementary embedding j : M → M such that
η < crit(j) < δ.

Remark. We write δ0 to denote the least proto-Berkeley cardinal and so Theorem 9.19 shows
that it is in fact a Berkeley cardinal. More generally, δα denotes the least proto-Berkeley cardinal
where we are guaranteed that there is an embedding whose critical point is above α. The same
argument shows that δα is a Berkeley cardinal as well.

Note that this definition is a Π2 definition. Therefore the least Berkeley cardinal lies below
the least Σ3-correct cardinal, and in particular the least Berkeley cardinal is below the least
extendible cardinal.

Exercise 9.21. If δ is a Berkeley cardinal, then δ is the limit of inaccessible cardinals. If δ is a limit
of Berkeley cardinals, then δ is a Berkeley cardinal.

Exercise 9.22. If δ is a Berkeley cardinal and λ > δ is a limit ordinal, then Vλ |=“δ is a Berkeley
cardinal”.

Exercise 9.23. If λ is a Σ2-correct cardinal, δ < λ, and Vδ |=“δ is a Berkeley cardinal”, then δ is a
Berkeley cardinal.

Proposition 9.24. δ is a Berkeley cardinal if and only if for every transitive set M such that
δ ∈ M , for every η < δ and x ∈ M , there is j : M → M such that η < crit(j) < δ and j(x) = x.

Proof. One direction is trivial. In the other direction, assume that δ is a Berkeley cardinal, let M
be a transitive set and let η, x as in the assumption. Then N = M ∪{M, {M,x}} is a transitive
set such that δ ∈ N , therefore, there is some j : N → N such that η < crit(j) < δ. However,
{M,x} is the only set of maximal rank, so j({M,x}) = {M,x}, and therefore j(M) = M and
j(x) = x. So, j ↾M is as wanted.
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The same arguments above hold for proto-Berkeley ordinals. They are also Π2-definable,
and so Σ2-correct ordinals will identify those correctly.

Theorem 9.25. If δ is the least Berkeley cardinal, then for all sufficiently large limit ordinals
λ, if j : Vλ → Vλ is an embedding with crit(j) < δ, then j(δ) = δ and sup{α < δ | j(α) = α} = δ.

Proof. Let λ0 > δ be the least Σ2-correct cardinal, and let λ > λ0 be a limit ordinal. Then Vλ

knows that δ is the least Berkeley cardinal. In particular, j(δ) = δ for all j : Vλ → Vλ.
Towards contradiction, assume that j : Vλ → Vλ is an elementary embedding with crit(j) < δ

and sup{α < δ | j(α) = α} = η0 < δ. Let ηn+1 = j(ηn), then for η = sup{ηn | n < ω} we have
that j(η) = η, and therefore it must be that η = δ.

Let M0 ∈ Vλ0 be a transitive set of minimal rank witnessing that η0 is not proto-Berkeley.
Letting Mn+1 = j(Mn), we have that Mn+1 is a witness that ηn is not proto-Berkeley. Since
we chose M0 to have minimal rank, it must be that Mn+1 also has minimal rank, and therefore
Mn+1 ∈ Vλ0 as well, since Vλ0 can detect the failure of Berkeley-ness of each ηn.

In particular, the sequence M = ⟨Mn | n < ω⟩ ∈ Vλ0+1 ⊆ Vλ. Letting i : Vλ → Vλ be an
embedding with crit(i) < δ and i(M) = M, we take n < ω to be the least such that crit(i) < ηn.
However, i(Mn) = Mi(n) = Mn, and therefore Mn was a witness that ηn is not a proto-Berkeley
ordinal, in contradiction to the fact that i ↾Mn : Mn → Mn has critical point below ηn.

Theorem 9.26. Suppose that δ is a Berkeley cardinal, then there is an inaccessible cardinal
η < δ such that Vη has a Reinhardt cardinal.

Proof. We can assume that δ is the least Berkeley cardinal, and so we can find some sufficiently
large λ such that j : Vλ → Vλ has crit(j) < δ and δ = sup{α < δ | j(α) = α}.

Fix such j and let κ = crit(j). We let α be such that κ < α = j(α) < δ and let η be the least
inaccessible cardinal above α. Since η is definable in Vλ from α, j(η) = η, so j ↾Vη : Vη → Vη.

Exercise 9.27. If δ is a Berkeley cardinal, then there is an inaccessible cardinal η < δ such that Vη

has two distinct Reinhardt cardinals.

Definition 9.28. We say that δ is a club Berkeley cardinal if it is a regular cardinal and for
every transitive set M with δ ∈ M , {crit(j) | j : M → M, crit(j) < δ} is stationary in δ.

Theorem 9.29. If δ is a club Berkeley cardinal, then δ is totally Reinhardt.

Proof. Let A ⊆ Vδ, we want to show there is an A-super-Reinhardt in Vδ. Letting M be a
transitive set such that Vδ+1 ∈ M and A is definable in M , then there is κ < δ such that for
any α < δ there is an elementary embedding j : M → M such that crit(j) = κ, j(κ) > α,
and j(A) = A. To prove this first fix M , and suppose this is not the case. Then for each κ,
there is a least ordinal, f(κ) for which there is no such j with crit(j) = κ. Since δ is regular,
C = {α < δ | f“α ⊆ α} is a closed set. If C is a club, then there is some j : M → M such
that crit(j) = κ is in this club, this means that j(κ) ∈ j(C), but using the same trick as
Proposition 9.24 we may assume j(C) = C. However, κ < j(κ) and f(κ) > j(κ), which is a
contradiction to the definition of f . Therefore, taking any M where A is definable, and letting
κ be as above, we get that j ↾ Vδ satisfies that (j ↾ Vδ)+(A) = j(A) = A as wanted.

Definition 9.30. We say that δ is a rank Berkeley cardinal if for all λ ≥ δ > η there is an
elementary embedding j : Vλ → Vλ with η < crit(j) < δ.

Exercise 9.31 (*) . If j : V → V is a Reinhardt embedding, then λ(j) is a rank Berkeley cardinal.
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Chapter 10

Coda: Exacting cardinals and the
HOD Conjecture

In this chapter, which assumes ZFC, we discuss a preprint of Aguilera, Bagaria, and Lücke
from November 2024 (“Large cardinals, structural reflection, and the HOD Conjecture”).
These concepts and results may still change as we progress forward.

10.1 Exacting cardinals

Definition 10.1. We say that λ is an exacting cardinal if for all α < λ < ζ, there exists X ≺ Vζ

with Vλ ∪ {λ} ⊆ X and an elementary embedding j : X → Vζ with α ≤ crit(j) < λ = j(λ).

Exercise 10.2. If λ is an exacting cardinal, then λ is an I3 cardinal.

Exercise 10.3. If λ is the least exacting cardinal, then there are no extendible cardinals below λ.

Exercise 10.4 (*) . λ is an exacting cardinal if and only if for all ζ > λ, there exists X ≺ Vζ with
Vλ ∪ {λ} ⊆ X and an elementary embedding j : X → Vζ with crit(j) < λ = j(λ).

Fact 10.5. If j : L(Vλ+1) → L(Vλ+1) is an I0 embedding, then there is a transitive set M
satisfying ZFC in which λ is an exacting cardinal.

We will not prove this. But the model, however, is relatively easy to describe. We identify
a set Γ in L(Vλ+1) and we take M = Lλ+(Γ).

Exercise 10.6. If λ is an I3 cardinal, then for every j : Vλ → Vλ there is a well-ordering on Vλ, ◁,
of order type λ, such that j+(◁) = ◁.

Fix ◁ as in the exercise, then Γ = Vλ ∪ {λ⃗,◁}. And so, we take M = Lλ+(Γ).

Exercise 10.7. M ∈ L(Vλ+1) and j(M) = M . Therefore j ↾M : M → M is an elementary.

Theorem 10.8. Suppose that λ is an exacting cardinal. Then cf(λ)HOD = λ.

Proof. Towards a contradiction, assume that cf(λ)HOD < λ. Let ζ be a Σ3-correct cardinal
such that λ < ζ. Then there is an X ≺ Vζ such that Vλ ∪ {λ} ⊆ X and j : X → Vζ satisfies
j(λ) = λ > crit(j) > cf(λ)HOD.
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Let c : cf(λ)HOD → λ be the HOD-least cofinal function. Since the well-ordering of HOD is
Σ2-definable, c is Σ3-definable in V using λ as a parameter. In particular, Vζ agrees that c is
the least such function, and in particular, c ∈ X. As j(λ) = λ, it must be that j(c) = c as well,
and since crit(j) > dom c it must be that j(c) = j“c.

However, λ = λ(j), since j↾Vλ is an I3 embedding, λ is the least fixed point of j. In particular,
taking ξ such that c(ξ) > crit(j), it must be that c(ξ) < j(c(ξ)) = j(c)(j(ξ)) = c(ξ).

Exercise 10.9. If λ is an exacting cardinal, then cf(λ)HODVλ = λ.
Corollary 10.10. If there is an exacting cardinal, then V ̸= HOD. If there is a proper class
of exacting cardinals, then for all x, V ̸= HODx.
Remark. Most large cardinal axioms that are not known to be inconsistent with ZFC are
consistent with V = HOD. Even those without “canonical” inner models. This includes axioms
such as I0. So in a somewhat surprising twist, we have an axiom that is incompatible with
V = HOD. As a corollary we get that while I0 proves the existence of a transitive model of
ZFC with an exacting cardinal, it does not prove the existence of an exacting cardinal.
Definition 10.11. We say that λ is an ultraexacting cardinal if for all α < λ < ζ there
exists X ≺ Vζ such that Vλ ∪ {λ} ⊆ X and an elementary embedding j : X → Vζ such that
α ≤ crit(j) < λ, λ = j(λ), and j ↾ Vλ ∈ X.
Exercise 10.12. If λ is an ultraexacting cardinal and j : X → Vζ is a witnessing embedding, then
j ↾ Vλ is an I2 embedding.
Theorem 10.13. If λ is an ultraexacting cardinal and j : X → Vζ is a witnessing embedding
with ζ ∈ C(2), then (j ↾ Vλ)+ : Vλ+1 → Vλ+1 is an I1 embedding.

Proof. Let i = (j ↾Vλ)+, since j ↾Vλ ∈ X, we have that i ∈ X as well. Moreover, if x ∈ Vλ+1 ∩X,
then i(x) = j(x). In particular,

X |= “Vλ+1 |= φ(x)” ⇐⇒ Vζ |= “Vλ+1 |= φ(i(x))” ⇐⇒ X |= “Vλ+1 |= φ(i(x))”.

Therefore,
X |= “i is an I1 embedding”.

Therefore Vζ satisfies the same, and since it is Σ2-correct, i is an I1 embedding.

Definition 10.14. For a set a we say that a# exists if there is an elementary embedding
j : L(a) → L(a) such that crit(j) > rank(X).
Exercise 10.15. If κ is measurable, then a# exists for all a ∈ Vκ. If there exists a strong cardinal,
then every set has a sharp.
Fact 10.16. Suppose that λ is an ultraexacting cardinal and V #

λ+1 exists, then λ is the limit of
I0 cardinals. In particular, there is a set model of ZFC with a proper class of I0 cardinals.
Fact 10.17. Suppose that λ is an I0 cardinal, then there is an inner model of a generic extension
in which ZFC holds and λ is an ultraexacting cardinal.

This is somewhat surprising. Normally, adding a sharp on top of a weaker assumption is
not going to cause a very significant jump in the consistency strength. But whereas a single
I0 gives us a class model with an ultraexacting cardinal, adding a single measurable cardinal
above gives us the consistency of a proper class of I0 cardinals.
Exercise 10.18 (*) . Suppose that δ is an extendible cardinal and there exists (ultra)exacting
cardinal above δ. Then δ is the limit of (ultra)exacting cardinals and there is a proper class of
(ultra)exacting cardinals.
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10.2 Conjectures, conjectures, conjectures. . .

Fact 6.40 (The HOD Dichotomy). Suppose that κ is an extendible cardinal. Then exactly
one of the two following holds.

1. If δ > κ is singular, then δ is singular in HOD and δ+ = (δ+)HOD.

2. If δ > κ is a regular cardinal, then it is measurable in HOD.

The HOD Hypothesis is the first case of the two, and The HOD Conjecture states that the
Hypothesis is in fact a theorem. Namely, under sufficiently strong large cardinal axioms, the
universe of sets is provably close to HOD.

Theorem 10.18. If there exists an extendible cardinal below an exacting cardinal, then the
HOD Conjecture is false.

Proof. Let κ < λ be the extendible and exacting cardinals respectively. By Theorem 10.8, λ
is regular in HOD, and so the first scenario of the HOD Dichotomy fails, and in particular the
HOD Hypothesis fails, and so the HOD Conjecture is false.

Definition 10.19. The Weak HOD Conjecture states that if there is an extendible cardinal
below a huge cardinal, then the HOD Hypothesis is provable.

Exercise 10.20. If there is an extendible cardinal below an exacting cardinal, then the Weak HOD
Conjecture is false.

Fact 10.21. Suppose that there is a Σ3-correct Reinhardt cardinal and a supercompact above
its critical sequence. Then ZFC is consistent with the existence of an extendible cardinal below
an exacting cardinal. In particular, under this assumption, the HOD Conjecture is false.

How does the HOD Conjecture affect the large cardinal structure of the universe?

Theorem 10.22. If cf(λ) = ω < λ is such that λ+ is computed correctly in HOD and the club
filter on λ+ is λ+-complete, then λ is not a Kunen cardinal.

Proof. Suppose that λ was a Kunen cardinal and let j : Vλ+2 → Vλ+2 witness that. Note that by
mapping each R ⊆ Vλ+1 which codes an extensional and well-founded relation to its transitive
collapse, we can replace Vλ+2 by M = {a | tcl(a) ≤∗ Vλ+1} and assume j : M → M instead.31

Let S = {η < λ+ | cf(η) = ω}, then S ∈ HOD, and it is stationary there, or otherwise λ+

cannot be computed correctly in HOD. Partition S, in HOD, into a sequence of stationary sets,
⟨Sα | α < λ⟩. If this is impossible, then λ+ must be measurable in HOD and thus (λ+)HOD < λ+.

Since j(λ) = λ, we have that j(⟨Sα | α < λ⟩) = ⟨Tβ | β < λ⟩. Since j(S) = S, the
sequence of Tβ is a stationary partition of S as well. Let κ = crit(j) < λ and let C ⊆ λ+ be
{η < λ+ | j“η ⊆ η}. Since C is a club and Tκ is a stationary set, there is some η0 ∈ C ∩Tκ, but
if η ∈ C ∩ S, j(η) = η. In particular, j(η0) = η0.

As the original sequence of Sα was a partition of S, there is some α0 < λ with η0 ∈ Sα0 , and
so η0 = j(η0) ∈ j(Sα0) = Tj(α0). Therefore, j(α0) = κ, but κ = crit(j) so this is impossible.

Fact 10.23. If λ is a singular limit of supercompact cardinals, then λ+ is regular and the club
filter on λ+ is λ+-complete.

What the theorem tells us, along with the fact, is that in the first case of the HOD Dichotomy,
if there is a proper class of supercompact cardinals, then there is no Reinhardt cardinals.

31If Vλ+1 can be well-ordered, then this is exactly H((2λ)+).
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