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Chapter 1

Preliminaries

1.1 Baire’s Category Theorem
Definition 1. LetX be a topological space. F ⊆ X is said to be dense if F = X . Alternatively,
for every non-empty open set V ⊆ X , V ∩ F 6= ∅.

E ⊆ X is said to be nowhere dense1 if X \ E is dense. Alternatively, E is nowhere dense
if E does not contain any non-empty open set.

Lemma 2. Let X be a complete metric space, and U1, Un, . . . are dense open sets in X . Then⋂∞
i=1 Ui is dense in X .

Theorem 3 (Baire Category Theorem). Let X be a complete metric space and ∅ 6= Y ⊆ X
open. Then Y is not the countable union of nowhere dense sets.

Proof. Assume otherwise, En is the sequence of nowhere dense sets. Define for n ∈ N,
Un = X \ En, then Un is dense open. Using the lemma we have that

⋂
Un ∩ Y 6= ∅,

contradiction.

Definition 4. We say that a topological space is of first category2 if it is the countable union of
nowhere dense sets. Otherwise the space is called second category.

Theorem 5 (Baire Category Theorem (II)). If X is a complete metric space, and Y ⊆ X is a
non-empty open set, then Y is a second category space.

1.2 Uniform Boundedness Principle
Theorem 6. Let X be a complete metric space, and F ⊆ C(X,C). Assume that for every
x ∈ X ,Mx = sup{|f(x)| | f ∈ F} <∞. Then there exists an open set∅ 6= U ⊆ X for which
sup{Mx | x ∈ U} <∞.

Proof. Let m > 0 some natural number. Define Em(f) = {x ∈ X | |f(x)| ≤ m} for f ∈ F .
Note that Em(f) is closed for each f ∈ F . Finally, define Em =

⋂
{Em(f) | f ∈ F}. The

assumption gives us that
⋃∞
m=1Em = X , and therefore by BCT there is somem for which Em

contains a nontrivial open set, as wanted.
1Also sparse in some texts.
2Also meager in some texts.
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1.3 Hahn-Banach Theorems
Definition 7. Let X be a real vector space. p : X → R a function such that:

1. p(x+ y) ≤ p(x) + p(y), and

2. p(αx) = αp(x) for all α ≥ 0.

Then p is called a positive homogeneous function.

Theorem 8. Suppose that X is a real vector space and M ⊆ X is a [linear] subspace. If
p is positive homogeneous function on X and f0 : M → R a linear functional, such that
f0(x) ≤ p(x). Then there exists a linear functional f : X → R such that f �M = f0 such that
f(x) ≤ p(x) for all x ∈ X .

Proof. Let y /∈ M and look at My = span(M, y) = {x + αy | x ∈ M,α ∈ R}. We want to
extend f0 to My. So if f is such extension, f(x + αy) = f0(x) + αf(y) = f0(x) + αc. We
need to find c such that the following is satisfies:

f0(x) + αc ≤ p(x+ αy)

If α = 0 then we have nothing to check.
If α > 0, then we get that f0(x)+αc = f0( 1

α
x)+c ≤ p( 1

α
x+y), so c ≤ p( 1

α
x+y)−f0( 1

α
x).

If α < 0 by similar arguments we get that c ≥ f0(− 1
α
x)− p(−( 1

α
x+ y)).

For x1, x2 ∈M we have that:

f0(x1) + f0(x2) ≤ p(x1 + x2) = p(x1 + y + x2 − y) ≤ p(x1 + y) + p(x2 − y)

Therefore it is always the case that p(x1 + y) − f0(x1) ≥ f0(x2) − p(x2 − y). So there exists
some c ∈ R such that for every x1, x2 ∈M ,

inf
x1∈M

[p(x1 + y − f0(x1)] ≥ c ≥ sup
x2∈M

[f0(x2)− p(x2 − y)]

Taking such c will satisfy the two requirements for extending f0 toMy. Consider the collection
of all extensions of f0, ordered by inclusion, Zorn’s lemma gives us a maximal element which
has to be an extension of f0 to the entire space X .

Definition 9. Let X be a complex vector space. p : X → R is called a semi-norm if:

1. p(x+ y) ≤ p(x) + p(y), and

2. p(λx) = |λ|p(x) for all λ ∈ C.

Proposition 10. If p is a semi-norm, then p(0) = 0, p(x) ≥ 0, and p(x− y) ≥ |p(x)− p(y)|.

Theorem 11 (Hahn-Banach3). Let X be a complex vector space and p a semi-norm on X . If
M is a subspace and f0 : M → C a linear functional such that |f0(x)| ≤ p(x), then there exists
a linear extension f : X → C which is bounded by p.

3This theorem is actually due to Bohnenblust and Sobczyk
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Proof. We write f0(x) = g0(x) + ih0(x) where g0, h0 are real functionals. We have that
f0(ix) = if0(x) = i(g0(x) + ih0(x)) = ig0(x) − h0(x). And therefore g0(x) = h0(ix) and
g0(ix) = −h0(x). So we can always write f0(x) = g0(x)− ig0(ix).

We know that for every x ∈ M , |g0(x)|, |h0(x)| ≤ f0(x) ≤ p(x). In particular |g0(x)| ≤
p(x) so we can extend it as a real linear functional to some g such that g(x) ≤ p(x) for all
x ∈ X . Define f(x) = g(x) − ig(ix), then f is a linear extension of f0 as a complex linear
functional. To see that, we only need to check f(ix) = if(x).

Finally if f(x) = reiθ, then |f(x)| = r = f(eiθx) = g(eiθx) (the last equality is because
g is the real part of f and r ∈ R). But we know that |g(eiθx)| ≤ p(eiθx) = p(x). Therefore
|f(x)| = r ≤ p(x) as wanted.
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Chapter 2

Locally Convex Spaces

2.1 Motivating example
Let C[a, b] be the space of all continuous functions from [a, b] ⊆ R to C. This is a complete
metric space with d(f, g) = maxx∈[a,b] |f(x)−g(x)| (this is the uniform convergence topology).
Let Fn ⊆ C[a, b] be the following set,

{f | ∃x0 ∈ [a, b− 1
n
] : |f(x)− f(x0)| ≤ n(x− x0)∀x ∈ [x0, b]}

We claim that Fn is a closed set. If {fk}∞n=1 ⊆ Fn is a convergent sequence with limit g.
For each fk there is some xk0, and by the compactness of [a, b] we can assume without loss of
generality that xk0 → x0 for some x0 ∈ [a, b− 1

n
]. We know that |fk(x)− fk(xk0)| ≤ n(x− xk0)

and by the uniform convergence to g it follows that |g(x) − g(x0)| ≤ n(x − x0). Therefore
g ∈ Fn as well.

Next we claim that Fn is nowhere dense. Given f ∈ Fn, we will approximate it by piecewise
linear functions (this can be done using the fact f is uniformly continuous), and each piecewise
linear function will be approximated by saw-graph functions, that in every point has a slope of
more than n. This will show that if f ∈ Fn then it can be approximated by functions not in Fn.

It follows that
⋃
Fn is a first category set, whereas C[a, b] is a complete metric space so it

is of the second category. Therefore most functions in C[a, b] are not in any of the Fn’s. Such
function h satisfies that for every x ∈ [a, b], and for every y ∈ [x, b], |h(x)− h(y)| > n(y − x).
So h is nowhere differentiable.

Remark. From now on, unless stated otherwise, X is a complex vector space.

2.2 Convex, Balanced and Absorbing sets
Definition 12. LetM ⊆ X .

1. We say thatM is convex if whenever x, y ∈M and t ∈ [0, 1], then tx+ (1− t)y ∈M .

2. We say thatM is balanced if whenever x ∈M and λ ∈ C with |λ| ≤ 1, λx ∈M .

3. We say thatM is absorbing if whenever y ∈ X there is some µ > 0 for which µ−1y ∈M .
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Let p be a semi-norm on X , and letM = {x | p(x) ≤ 1}.

Proposition 13. M is convex, balanced, and absorbing.

Proposition 14. For every y ∈ X , p(y) = inf{µ > 0 | µ−1y ∈M}.

Proposition 15. Suppose now that M ⊆ X is convex, balanced and absorbing. Define
pM(y) = inf{µ > 0 | µ−1y ∈ N}. Then pM is a semi-norm.

Proof. To see linearity use absorption and balanced to show it works.
To see the triangle inequality, given x, y ∈ X fix ε > 0 and take x′ = 1

pM (x)+ε
x and

y′ = 1
pM (y)+ε

y, then t = pM (x)+ε
pM (x)+pM (y)+2ε

and use convexity, then ε → 0 gives the wanted
result.

Definition 16. Given M convex, balanced and absorbing, pM as defined before is called the
Minkowski functional ofM .

Theorem 17. If p is a semi-norm, then it is the Minkowski functional for {x | p(x) ≤ 1}.

2.3 Topology induced from semi-norms
Definition 18. Let {pγ}γ∈Γ a family of semi-norms onX . We say that this family is separating
if for every x0 6= 0 there is some γ ∈ Γ such that p(x0) > 0.

Definition 19. Given a separating family of semi-norms, we define a topology onX as follows:

1. For 0, define a basic neighborhood of 0 as U ε1,...,εn
γ1,...,γN

= {x ∈ X | pγi(x) < εi}. Now
B0 = {U ε1,...,εN

γ1,...,γN
| N ≥ 0, γi ∈ Γ, εi > 0}.

2. For every other point, we consider the basis of neighborhood obtains by shifting each
open set in B0 by y.

Proposition 20. If U ε1,...,εn
γ1,...,γN

∈ B0, then it is the intersection of U ε1
γ1
∩ · · · ∩ U εN

γN
.

Proposition 21. If the family is separating, the topology is Hausdorff.

Proof. Take x 6= y ∈ X . And without loss of generality x = 0, y 6= 0. There is some γ for
which pγ(y) = ε > 0. Now U

ε/4
γ and y + U

ε/4
γ are open and disjoint as wanted.

Remark. Under this topology every pγ is a continuous function.

Proposition 22. X is a topological vector space. Namely the addition and scalar multiplication
are both continuous.

Definition 23. Let X be a complex vector space which has a topology satisfying:

1. 0 has a basis of neighborhoods which are convex, balanced and absorbing.

2. X is a topological vector space.

Then we say that X is a locally convex vector space.
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Corollary 24. The topology defined on X from the family of semi-norms is locally convex.

Proposition 25. Suppose that X is topologized by a family of semi-norms {pγ}γ∈Γ. Let p be a
semi-norm on X , then p is continuous if and only if there are finitely many γ1, . . . , γn ∈ Γ and
c ≥ 0, such that for all x ∈ X , p(x) ≤ c · p̄(x) = c ·max{pγi(x) | i < n+ 1}.

Proof. We begin by proving the following claim. p is continuous if and only if it is continuous
at 0. One direction is trivial. For the other direction, suppose that p is continuous at 0. So for
every ε > 0 there exists some open neighborhood U = Uη,...,η

δ1,...,δk
such that p(U) ⊆ [0, ε). For

any given x0 ∈ X , consider x0 + U as an open neighborhood of x0, then for every x ∈ x0 + U
we have that p(x) ≤ |p(x)− p(x0)| < ε as wanted.

Suppose that p(x) ≤ c · p̄(x) for all x. Given some ε > 0 and x ∈ U ε/c,...,ε/c
γ1,...,γn , then

p(x) ≤ c · p̄(x) = c · max
i<n+1

pγi(x) < c · ε
c

= ε.

In the other direction if p is continuous at 0, then for some neighborhood Uη,...,η
δ1,...,δk

in which
p(x) < 1. Given y ∈ X , take x = η

maxi<k+1 pδi (y)
y. Then x ∈ Uη,...,η

δ1,...,δk
and therefore p(x) < 1,

so p(y) ≤ 1
η

maxi<k+1 pγi(y) as wanted.1

Remark. Letϕ(x, y) be a non-negative function onX×X which satisfiesϕ(x, y) = ϕ(y, x) and
ϕ(x, z) ≤ ϕ(x, z) + ϕ(y, z). Then ψ(x, y) defined as ϕ(x,y)

1+ϕ(x,y)
satisfies the triangle inequality.

Proposition 26. Suppose that Γ = {γn | n ∈ N} is a countable family of semi-norms. The
topology it induces on X is metrizable by the metric:

d(x, y) =
∞∑
k=1

2−k
pγk(y − x)

1 + pγk(y − x)

Theorem 27. Suppose that {pn | n ∈ N} is a family of semi-norms. Then the topology it
induces on X is equivalent to the topology induced by the metric d they induce.

Proof. Let ε > 0, and consider the open ball B(0, ε). Take N � 1 such that 2−N < ε
2
. Look

at the neighborhood U = U
ε/2,...,ε/2
1,...,N . For x ∈ U we calculate d(x, 0):

d(x, 0) =
∞∑
n=1

2−n
pn(x)

1 + pn(x)
=

N∑
n=1

+
∞∑

n=N+1

<
ε

2
+

N∑
n=1

2−n
ε

2
< ε.

Therefore U ⊆ B(0, ε). In the other direction we need to show that given Uη,...,η
1,...,N contains

some B(0, δ) for some δ > 0. Namely, we need to show that if
∑∞

n=1 2−n pn(x)
1+pn(x)

< δ, then
max{pi(x) | i ≤ N} < η. Choose δ = 2−N η

1+η
, and juggle semi-norms around.

Remark. d is continuous on X ×X .

Definition 28. Suppose thatX is locally convex by a countable family of semi-norms and d the
induced metric. X is a Fréchet space if it is complete under this metric. Additionally, if the
countable family is a singleton (so we have a normed space), we say thatX is a Banach space.2

1Note that we divide by the maximum over several pδi(y). What happens when all of those are 0?
2Wewill often write F-space and B-space to denote these, although this is not entirely standard in the literature.
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Chapter 3

Examples For Fréchet Spaces

3.1 Some topology in Rn

We say that Ω ⊆ Rn is a domain if it is open and connected.

Proposition 29. Suppose that Ω is a domain, then there is a sequence of compact setsKn such
thatKn ⊆ int(Kn+1) and Ω =

⋃
Kn and for everyK b Ω there is somem for whichK ⊆ Km.

Proof. Consider the collection of closed balls C1, C2, . . . b Ω with center and radius being
rational. DefineK1 = C1. IfKn was defined, letKn+1 be a compact set whose interior includes
Kn∪Cn+1. There exists suchKn+1 by normality ofRn (separateKn fromRn \Ω; if you cannot
then Ω = Rn in which case define Kn = B(0, n)).

It is not hard to see whyKn is as wanted. But moreover we have that ifK b Ω, there exists
somem for which K ⊆

⋃m
i=1Ci, and therefore K ⊆ Km.

Such a sequence of compact sets is called an exhausting sequence of Ω.

Consider C(Ω), the continuous complex functions on Ω. Let K b Ω, let pK(f) =
max{|f(x) | x ∈ K}. Then pK is a semi-norm, and {pK}KbΩ is a separating family. Therefore
this family induces a locally convex topology on C(Ω), and when we consider C(Ω) as a
topological space, we will always consider it with this topology.

Proposition 30. The topology on C(Ω) is actually the induced only by {pKm}m∈N where Km

is an exhausting sequence. In particular the topology on C(Ω) is metrizable.

Proof. It suffices to show that given any compact set K b Ω, the semi-norm pK is continuous
with respect to the topology induced by the exhausting sequence. However, if K b Ω, there
is some m for which K b Km and therefore pK(f) ≤ pKm(f) for all f ∈ C(Ω), which is the
criterion for pK to be continuous, as wanted.

Proposition 31. C(Ω) is completely metrizable.

Proof. Fix an exhausting sequence, and look at the metric it defines:

d(f, g) =
∞∑
j=1

2−j
pKj(f − g)

1 + pKj(f − g)
,

10



and suppose that fm is a Cauchy sequence in the metric. So for every ε > 0 there is some N
so whenever r, s > N , d(fr, fs) < ε. In particular for every j, the restrictions fm � Kj give
us Cauchy sequences for each Kj . Therefore for each j, there is some gj which is the (uniform
convergence) limit of fm � Kj . Because Kj ⊆ Kj+1 we have that gj = gj+1 � Kj for all j.

Therefore g =
⋃
gj is defined on Ω, and by uniform convergence on each Kn, ensures that

g is continuous on Ω. It remains to show that g is the limit of fm, which is the usual ε juggling
arguments.

3.2 Another Example
Take X = C[0, 1] and define two semi-norms:

1. p1(f) = max0≤x≤1{|f(x)|}.

2. p2(f) =
∫ 1

0
|f(x)|dx.

However p2(f) ≤ p1(f), and so p2 is continuous with respect to p1. The topology defined from
p1 is in fact completely metrizable, and so C[0, 1] is a B-space with this norm.

Consider now the subspaceP = {f ∈ C[0, 1] | f a polynomial}, thenP is a linear subspace
ofX and therefore it is a normed space. However by Weierstrass’ theorem every function inX
can be approximated by polynomials and therefore P is not closed, so it is not complete under
this norm.

Compare the two topologies of C[0, 1], the max-norm and the topology induced from an
exhausting sequence. The former is a B-space, but the latter is a F-space and not a Banach
space.

Now consider the topology on C(0, 1), defined by the pointwise convergence of sequences,
this is the usual product topology C(0,1). This topology is given by the family of semi-norms,
px(f) = |f(x)| for every x ∈ (0, 1). Therefore the topology is indeed locally convex. But is it
metrizable, and does it give rise to an F-space?

3.3 Differentiable Functions
Let Ω ⊆ Rn be a domain. We write Ck(Ω) for the space of all continuous functions which can
be differentiated at least k times. C(Ω) = C0(Ω). Given α = 〈α1, . . . , αn〉 ∈ (N ∪ {0})n we
define,

∂αf =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn
f.

We define |α| =
∑n

i=1 αi, and for k ∈ N we define Ck(Ω) = {f | ∂αf ∈ C0(Ω),∀|α| ≤ k}.

Proposition 32. Let pKj ,`(f) = maxKj ,|α|` |∂αf |, where Kj is an exhausting set for Ω. For
` ≤ k, Ck(Ω) is an F-space in the topology induced by these semi-norms.

This is the space of continuously differentiable functions of order k, in the uniform conver-
gence topology on every derivative on every compact subset of Ω.
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Proposition 33. Suppose that {fm}∞m=1 ⊆ Ck(Ω) a sequence of functions such that for every
α such that |α| ≤ k the following sequences converge uniformly on every compact set:

lim
n→∞

fm = g ∈ C(Ω), lim
n→∞

∂αfm = gα ∈ C(Ω).

Then g is continuously differentiable up to order k and gα = ∂αg.
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Chapter 4

Locally Convex Spaces (II)

4.1 Linear Operators on Locally Convex Spaces
Let X be a locally convex complex linear space.

Definition 34. Let f : X → C be a function. We say that f is a linear functional if f(x+ y) =
f(x) + f(y) and for all λ ∈ C, f(λx) = λf(x).

Proposition 35. Let f be a linear functional, then f is continuous on X if and only if it is
continuous at 0.

Proposition 36. Let f be a linear functional on X . Then f is continuous if and only if there
exists a continuous semi-norm p and c > 0 such that |f(x)| ≤ c · p(x) for all x ∈ X .

Proof. If |f(x)| ≤ c · p(x), then it is not hard to verify that f is continuous at 0. In the
other direction, if f is continuous, then there is some U open neighborhood of 0, such that
f(U) ⊆ B(0, 1) (where B(0, 1) is computed in C). However there is some continuous semi-
norm p and ε > 0 such that {x | p(x) ≤ ε} ⊆ U . Take y 6= 0 so ε·y

p(y)
∈ U and therefore

|f( ε·y
p(y)

)| ≤ 1 and therefore |f(y)| ≤ 1
ε
p(y).

Definition 37. Let X, Y be locally convex spaces. T : X → Y is called a linear operator if it
is linear.

Proposition 38. A linear operator T : X → Y is continuous if and only if T is continuous at
0.

Proposition 39. T : X → Y is continuous if and only if for every continuous semi-norm q on
Y , there exists a continuous semi-norm p on X , and c > 0 such that q(Tx) ≤ c · p(x).

So for example, ifX and Y are normed spaces, with ‖ · ‖X and ‖ · ‖Y the respective norms.
Then T : X → Y is continuous if and only if ‖Tx‖Y ≤ c‖x‖X .

Proposition 40. Let X be an F-space. If A,B ⊆ X then A + B ⊆ A+B. And ifW ⊆ X is
open, thenW −W is an open environment of 0.

Proof. Suppose that xn → x where xn ∈ A and x ∈ A and yn → y where yn ∈ B and y ∈ B,
then xn + yn → x+ y since addition is continuous. Therefore x+ y ∈ A+B.

For the second part, note thatW −W =
⋃
y∈W y −W . Since moving an open set is open,

y −W is open for each y, soW −W is open, and it is easy to see that 0 ∈ W −W .
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Proposition 41. Let T : X → Y be a surjective linear operator. Then for every 0 ∈ U ⊆ X
open, Y =

⋃∞
k=1 kT (U).

Proof. Since U is open, it contains a ball around 0, therefore every x ∈ X has some k ∈ N
such that x ∈ kU . By linearity it follows that T (x) ∈ kT (U), and by surjectivity of T the claim
follows.

Proposition 42. Let T : X → Y be a surjective linear operator. If 0 ∈ U ⊆ X open, then
T (U) contains an open neighborhood of 0 in Y .

Proof. Since Y =
⋃∞
k=1 kT (U), it follows from Baire’s Category Theorem that there is some

k0 such that k0T (U) which contains an open set. However, scalar multiplication is a homeo-
morphism, so T (U) contains an open environment Y .

But now there is someW ⊆ X which is an open neighborhood of 0 andW −W ⊆ U (for
example, a small enough ball around 0). Therefore T (W )− T (W ) ⊆ T (U). But by the above
argument T (W ) contains an open set, and therefore T (W −W ) ⊆ T (U) and so we have that
T (U) contains an open neighborhood of 0 as wanted.

4.2 Open Mapping and Closed Graph Theorems
Theorem 43 (Open Mapping Theorem). Let X, Y be F-spaces and T : X → Y a continuous
linear operator between them. If T (X) = Y (namely, T is surjective), then T is an open map.
In other words, whenever U ⊆ X is open, T (U) is open in Y .

Proof. Let U ⊆ X be an open neighborhood of 0. Pick some ε > 0 such that BX(0, ε) ⊆ U .
DefineBX,i = B(0, 2−iε) for i ∈ N. So for each i there is some ηi such thatBY (0, ηi) ⊆ BX,i).
Without loss of generality ηi → 0 monotonically as well.

Pick y ∈ T (BX,1). Then there is some x1 ∈ BX,1 such that dY (y − Tx1, 0) < η2, so
y − Tx1 ∈ T (BX,2) by the choice of ηi’s. Continue by induction finding xn ∈ BX,n such that
dY (y − T (

∑
i≤n xi, 0) < ηn+1. Denote by zn =

∑
i<n xi, then zn is a Cauchy sequence in X .

So there is some x = limn→∞ zn.
But now we have that dX(x, 0) ≤

∑∞
i=1 dX(xi, 0) < ε. So x ∈ B0 ⊆ U .

On the other hand T is continuous, and dY (y−T (zn), 0) < ηn+1, so Tx = y. And therefore
T (U) contains an open neighborhood of 0 since T (BX,1) ⊆ T (U).

And now if V ⊆ X is any open set, and x0 ∈ V , then there is some δ > 0 such that
x0 + BX(0, δ) ⊆ V . But now using continuity of addition and the previous part, we have that
Tx0 + T (B(0, δ)) ⊆ T (V ) and contains an open neighborhood of Tx0 as wanted.

Corollary 44. If T : X → Y is a continuous linear operator which is bijective, then it is a
homeomorphism.

Proposition 45. Suppose that X is a Banach space under two norms, ‖ · ‖1 and ‖ · ‖2. And
suppose that there is some c > 0 for which ‖x‖2 ≤ c‖x‖1 for all x ∈ X . Then the norms are
equivalent.

Proof. Simply take the identity map x 7→ x which is linear and bijective. By the assumption on
‖x‖2 ≤ c‖x‖1, this is a continuous operator as well. Therefore by the open mapping theorem,
this is a homeomorphism, so the norms are equivalent.
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Proposition 46. If X and Y are F-spaces, then X × Y is an F-space as well.

Proof. We define the product topology on X × Y . If {pn}n∈N and {qk}k∈N are the family of
semi-norms defining the topologies on X and Y respectively, then tn,k(x, y) = pn(x) + qk(y)
is a countable collection of semi-norms which define the product topologies on X × Y .

The space is completely metrizable since the product of two completely metrizable spaces
is completely metrizable.

Definition 47. Let T : X → Y be a linear operator. The graph of T is the subspace GT =
{(x, Tx) | x ∈ X} of X × Y .

Theorem 48 (Closed Graph Theorem). Suppose that T : X → Y is a linear operator between
F-spaces, then T is continuous if and only if GT is closed.

Proof. Suppose that T is continuous, let {(xn, Txn)}∞n=1 a Cauchy sequence in X × Y . Since
X is an F-space, there is some x ∈ X such that limn→∞ xn = x, and by continuity Txn → Tx
in T . Therefore (x, Tx) ∈ GT , and therefore this is a closed set.

Suppose that GT is closed, then by the virtue of being a closed subspace of an F-space, GT

is an F-space on its own. Consider the map Φ(x) = (x, Tx). Easily this is a bijection between
X and GT . Consider the projection map, Φ−1(x, Tx) = x. By the definition of the product
topology we have that Φ−1 is continuous, and easily a linear operator, and surjective. By the
Open Mapping Theorem we have that Φ is continuous and therefore T is continuous as the
composition of Φ and a projection to Y .

4.3 More On Linear Operators Between F-spaces
Here X and Y will always be two F-spaces.

Theorem 49 (Uniform Boundedness Theorem). Let {Ta}a∈A a family of continuous linear
operators from X to Y . Moreover, assume that the following condition holds:

∀x ∈ X sup
a∈A

dY (Tax, 0) <∞,

then there exists an open ball BX(0, ε) ⊆ X for which supa∈A supx∈BX(0,ε) dY (Tax, 0) <∞.

Proof. For every a ∈ A define the function fa(x) = dY (Tax, 0). Then {fa}a∈A is a family of
continuous functions from X to C. Now the condition of the uniform boundedness principle
holds, therefore there is an open set U ⊆ X such that supx∈U supa∈A fa(x) < ∞. Find some
BX(x0, ε) ⊆ U , and now for x ∈ BX(x0, ε) it holds that,

dY (Ta(x− x0), 0) ≤ dY (Tax, 0) + dY (Tax0, 0),

and therefore

sup
z∈B(0,ε)

sup
a∈A

dY (Taz, 0) ≤ sup
a∈A
{dY (Tax0, 0)}+ sup

x∈U
sup
a∈A
{dY (Tax, 0)} <∞

Therefore BX(0, ε) is as wanted.
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4.3.1 The Particular Case of Normed Spaces
Proposition 50. Let T : X → Y a linear operator between two normed spaces. Then T is
continuous if and only if there exists some c > 0 for which ‖Tx‖Y ≤ c‖x‖X for all x ∈ X .

Proof. If ‖Tx‖Y ≤ c‖x‖X , then it is clear that T is continuous (it is continuous at 0). In the
other direction, if T is continuous, then we saw in general in the case of semi-norms that this is
a condition guaranteeing continuity.

Proposition 51. IfX andY are normed spaces, andT : X → Y is a continuous linear operator,
then:1

sup
‖x‖X≤1

‖Tx‖Y = inf{c > 0 | ‖Tx‖Y ≤ c‖x‖X}.

Proof. If c > 0 satisfies that ‖Tx‖Y ≤ c‖x‖X , then in particular ‖Tx‖Y ≤ c for all ‖x‖X ≤ 1.
Therefore we have that sup ≤ inf.

In the other direction, if c1 < sup then there is ‖x‖X ≤ 1 such that ‖Tx‖Y > c1, c1‖x‖X .
Therefore c1 < inf. Therefore sup ≥ inf and equality holds as wanted.

We say that an operator is bounded if it is continuous, namely if the image of the unit ball
is bounded.

Definition 52. If X and Y are normed spaces, T : X → Y is a continuous linear operator, we
define the operator norm of T as

‖T‖ = sup
‖x‖X≤1

‖Tx‖Y .

If Y = C, we denote byX∗ the space of all continuous linear functionals fromX toC. This
is called the dual space of X .

4.3.2 We Continue From the Digression... But Now Only For Normed
Spaces

Theorem 53. Suppose that {Ta}a∈A is a family of continuous linear operators from a B-
space X to a normed space Y . Suppose that for all x ∈ X , supa∈A ‖Tax‖Y < ∞. Then
supa∈A ‖Ta‖ <∞.

We will write B(X, Y ) for the space of all bounded linear operators T : X → Y . IfX = Y we
just write B(X).

Proposition 54. If X and Y are normed spaces, then B(X, Y ) is a normed space using the
operator norm as defined above.

Proposition 55. If Y is a Banach space, then B(X, Y ) is a Banach space.

Proof. If {Tn} is a Cauchy sequence in B(X, Y ), given ε > 0, n,m > N(ε) satisfy:

‖(Tn − Tm)x‖Y < ε‖x‖X , ∀x ∈ X.

Use the completeness of Y to define Tx = limn→∞ Tnx, which is therefore well-defined. It
follows from the definition that T is a bounded linear operator and that it is the limit of {Tn}.

1In the following equality we can use ‖x‖X = 1. Why?
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Corollary 56. If X is a normed space, then X∗ = B(X,C) is a Banach space.

Proposition 57. Let X be a B-space and Y is a normed space, and let {Tn}∞n=1 ⊆ B(X, Y ) a
sequence of bounded operators such that for every x ∈ X the following limit exists in Y :

lim
n→∞

Tnx = Tx.

Then the following things are true:

1. T ∈ B(X, Y ),

2. supn≥1 ‖Tn‖ <∞,

3. ‖T‖ = lim infn→∞ ‖Tn‖.
Proof. First note that because the limit exists for every x ∈ X , it follows that for every
x ∈ X , supn ‖Tnx‖ <∞, and therefore by the uniform boundedness theorem sup ‖Tn‖ <∞.
Additionally, T is linear because lim is linear.

From the fact that norms are continuous on normed spaces, it follows that ‖Tx‖Y =
limn ‖Tnx‖Y ≤ ‖Tn‖‖x‖X . Since x plays no particular role it follows that indeed ‖T‖ =
lim infn ‖Tn‖.
Remark. If T, S ∈ B(X) then ‖TS‖ ≤ ‖T‖‖S‖.
Proposition 58. Suppose that X is a B-space, and let T ∈ B(X) such that ‖T‖ < 1. Then
I − T is an invertible and (I − T )−1 is bounded and the following equality holds:

(I − T )−1 = I + T + T 2 + . . . (*)

Proof. We first need to show that the infinite series has meaning. Let SN = I + T + . . .+ TN

for N ≥ 1. Given anyM > N we have that:

‖SM − SN‖ ≤ ‖TN+1‖+ . . . ‖TM‖ ≤ ‖T‖N+1 + . . . ‖T‖M .

By the assumption that that ‖T‖ < 1 this is a Cauchy sequence and therefore it has a limit S.
To see that S = (I − S)−1 note that:

(I − T )S = lim
N→∞

(I − T )SN = lim
N→∞

I − TN+1 = I.

This follows from the fact that ‖TN+1‖ ≤ ‖T‖N+1 → 0. Therefore S = (I − T )−1.

The series (I − T )−1 = I + T + T 2 + . . . is called the Neumann series.
Corollary 59. The set of invertible operators in B(X) is open (in the operator norm).

Proof. Suppose that T ∈ B(X) is invertible, then for S ∈ B(X), T − S = T (I − T−1S).
If ‖S‖ < 1/‖T−1‖, namely S lies inside the open ball U of radius 1/‖T−1‖ around 0, then
‖T−1S‖ ≤ ‖T−1‖‖S‖ < 1 and therefore T (I − T−1S) is invertible.

If we consider the algebraic structure of B(X), then we have addition and scalar multipli-
cation. But since B(X) is closed under composition, it is in fact a C-algebra. Moreover when
we consider the norms:

‖TSx‖X ≤ ‖T‖‖Sx‖X ≤ ‖T‖‖S‖‖x‖X .

Therefore ‖TS‖ ≤ ‖T‖‖S‖. This is a normed algebra.
Another example for a normed algebra is C(K) where K b Rn, given by the usual norm

‖f‖ = sup{|f(x)| | x ∈ K} and the multiplication is given pointwise.
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Chapter 5

Some Properties of Dual Spaces

Recall that if X is a normed space, its dual space X∗ = B(X,C) is a B-space. We will always
assume X is a normed space, unless stated otherwise.

5.1 On the Existence of Functionals
Proposition 60. Let 0 6= x0 ∈ X . Then there is f ∈ X∗ such that f(x0) = ‖x0‖X and ‖f‖ = 1.

Proof. Consider the space X0 = {αx0 | α ∈ C}. Now consider the linear functional defined
on X0, f0(αx0) = α‖x0‖X . It is easy to see that f0 is a linear functional.

>From its definition, it follows that |f0(αx0)| ≤ ‖αx0‖X . Of course the norm is a semi-
norm, so Hahn-Banach applies to extend f0 to a linear functional on X which is bounded by
the norm, and therefore continuous. Moreover for all x ∈ X , |f(x)| ≤ ‖x‖X and therefore
‖f‖ ≤ 1.

On the other hand, f(x0) = f0(x0) = ‖x0‖X and therefore taking u = 1
‖x0‖X

x0 gives us that
f(u) = 1 and so ‖f‖ = 1 as wanted.

Corollary 61.
‖x0‖X = max

‖f‖≤1, f∈X∗
|f(x0)|

Proof. It is clear that if ‖f‖ ≤ 1 then |f(x0)| ≤ ‖x0‖X . So sup‖f‖≤1 |f(x0)| ≤ ‖x0‖X . By the
previous proposition, there is some f giving us exactly f(x0) = ‖x0‖ so sup is in fact max.

Is the dual proposition true? Namely, ‖f‖ = max‖x‖X≤1 |f(x)|? If we replace max by sup
we get the definition of ‖f‖. So the question is whether or not we can realize this sup as an
actual point on the closed unit ball. The answer is negative, as the following example shows.

Example 62. Let X = {ϕ ∈ C[0, 1] | ϕ(0) = ϕ(1) = 0}. It is not hard to show that X is a
closed subspace of C[0, 1] and therefore a B-space. Consider f(ϕ) =

∫ 1

0
ϕ(t)dt, then f ∈ X∗,

‖f‖ = 1. But there is no ϕ ∈ X such that f(ϕ) = 1.

Proposition 63. LetM ⊆ X a closed subspace of X , and y ∈ X \M such that d(y,M) = δ.
Then there exists some f ∈ X∗ such that f �M = 0, f(y) = δ, and ‖f‖ ≤ 1.
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Proof. Consider My = spanM ∪ {y} = {m + α · y | m ∈ M,α ∈ C}. Define f0 on My

by f0(m + α · y) = αδ. In order to apply the Hahn-Banach theorem, we need to check that
|f0(m+ α · y)| ≤ ‖m+ α · y‖X . If α 6= 0, then we have that:

‖m+ α · y‖X = |α|
∥∥∥m
α

+ y
∥∥∥
X
≥ |α|δ = |αδ| = |f0(m+ α · y)|.

Use Hahn-Banach to obtain f ∈ X∗ defined on X such that ‖f‖ ≤ 1, and it is easy to see that
f �M = 0 and f(y) = δ as wanted.

Recall that a topological space X is separable when it has a countable dense subset. We
make the following remark.

Remark. Let X be a normed space, then X is separable if and only if S = {x | ‖x‖X = 1} is
separable.

Proposition 64. Let X be a B-space. If X∗ is separable, then X is separable.

Proof. Let {fn}∞n=1 a countable dense subset on the unit sphere of X∗. For every n there is
xn ∈ X such that |fn(xn)| ≥ 1

2
and ‖xn‖X = 1. We will show thatM = span{xn | n ∈ N} is

dense in X . Suppose not, then there is some y ∈ X \M , by the previous proposition we have
some f ∈ X∗ such that f �M = 0, ‖f‖ = 1 and f(y) = β 6= 0.

We have now that:

1

2
≤ |fn(xn)| ≤ |(fn − f)(xn)|+ |f(xn)| = |(fn − f)(xn)| =⇒ ‖fn − f‖ ≥

1

2
.

This is for every n, but this means that f is not an accumulation point of the {fn}∞n=1.

Proposition 65. In Theorem 63 we can require that ‖f‖ = 1.

We first prove the following lemma.

Lemma 66. Let X be a normed space, M ⊆ X a closed subspace, then for every 1 > ε > 0
there is some xε ∈ X such that d(xε,M) > 1− ε and ‖xε‖X = 1.

Proof. Let u ∈ X \ M such that d(u,M) = d > 0, then there is some v ∈ M such that
‖u− v‖X < d

1−ε . But now d(u− v,M) = d as well, since inf{‖(u− v)−m‖X | m ∈M} =

inf{‖u − (v + m)‖X | m ∈ M}. Let xε = u−v
‖u−v‖X

. We have that d(xε,M) = 1
‖u−v‖X

· d >
1−ε
d
· d = 1− ε.

Now we can prove the proposition.

Proof. Let My be as in the original proof, and f0(m + α · y) = αδ, where δ = d(y,M).
For every ε > 0 we can find by the lemma some αε ∈ C such that ‖m + αε · y‖X = 1 and
|αε|δ = d(m+ αε · y,M) > 1− ε.

Therefore the following holds:

f0(m+ αε · y) = αεδ =⇒ |f0(m+ αε · y)| = |αε|δ > 1− ε.

And since ‖m+αε ·y‖X = 1, it follows that ‖f0‖ ≥ 1 and therefore ‖f0‖ = 1, and the extension
to f also satisfies ‖f‖ ≤ 1 and so ‖f‖ = 1 as wanted.
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Proposition 67 (Mazur’s Theorem). Let K ⊆ X a closed set which is also convex, balanced
and absorbing, and let y ∈ X \K. Then there is some f ∈ X∗ such that |f(x)| ≤ 1 for x ∈ K
and f(y) > 1.

Proof. Since K is closed there is some open ball around y, B(y, ε) ∩K = ∅, but this means
that B(y, ε

2
) ∩ (K +B(0, ε

2
)) = ∅ again.

However V = K + B(0, ε
2
) is an open neighborhood of 0 which is convex, balanced and

absorbing. Moreover y /∈ V , since the above shows there is an open neighborhood of y disjoint
from V . Take p to be the Minkowski functional of V . Then x ∈ V ⇐⇒ p(x) ≤ 1, so
p(y) > 1; and p is continuous as a semi-norm of such set.

Take now Hy = span{y} = {α · y | α ∈ C}, and define on Hy the functional f0(α · y) =
α · p(y). So we have that |f0(α · y)| = |α|p(y) = p(α · y) and therefore |f0| ≤ p for x ∈ Hy.
Using Hahn-Banach there is a linear extension of f0 to some f defined on all X such that
|f(x)| ≤ p(x) for all x ∈ X .

Now f is continuous because it is bounded by a continuous semi-norm. Therefore f ∈ X∗
and it satisfies the wanted properties.

Proposition 68. Let X be a normed space, andM ⊆ X a subspace. Given f0 ∈ M∗, there is
some f ∈ X∗ which extends it, and ‖f0‖ = ‖f‖.

Proof. For every m ∈ M we have |f0(m)| ≤ ‖f0‖ · ‖m‖X . Define a semi-norm on X ,
p(x) = ‖f0‖‖x‖X . Then |f0(m)| ≤ p(m) for all m ∈ M . By the simplest form of Hahn-
Banach, there is some f extending f0 and |f(x)| ≤ p(x) for all x.

Therefore f ∈ X∗, and ‖f‖ ≤ ‖f0‖ as a result, so ‖f0‖ = ‖f‖.

Definition 69. Suppose M ⊆ X is a closed subspace. For ε > 0 there is some yε ∈ X such
that ‖yε‖X = 1 and d(yε,M) > 1− ε. We say that yε is almost orthogonal toM .

Remark. If X is a finite dimensional space, then the unit sphere S is compact, and therefore
we can find for each k ∈ N some yε for ε = 1

k
, denote it by yk. Then {yk}∞k=1 has a limit point

on S, which is some y such that ‖y‖X = 1 and d(y,M) = 1 as well.

Example 70. Let Pk be the space of complex polynomials on [0, 1] with the max-norm. Con-
sider X = P18 and M = P17. Then there is some polynomial p of degree 18 such that
maxx∈[0,1] |p(x)| = 1, and for every q ∈M we have that maxx∈[0,1] |p(x)− q(x)| ≥ 1.

5.2 Continuous Functionals on a Normed Space X
Suppose that X is a normed space, we know that X∗ is a B-space. We denote by X∗∗ the dual
space of X∗. We define a linear operator Φ on X:

Φ(x)(f) = f(x)

Namely Φ: X → X∗∗, because if f ∈ X∗ then evaluating f by a fixed x is a linear map from
X∗ to C. We need that Φ(x) to be continuous onX∗ in order to solidify our claim. But we have
|Φ(x)(f)| = |f(x)| ≤ ‖f‖ · ‖x‖X , but here ‖x‖X is fixed, so we have the wanted continuity,
and ‖Φ(x)‖ ≤ ‖x‖X .

On the other hand we also know that there is some fx ∈ X∗ such that ‖fx‖ = 1 and
fx(x) = ‖x‖X . Therefore |Φ(x)(fx)| = ‖x‖X , and therefore the inequality above is not strict.
Namely, ‖Φ(x)‖ = ‖x‖X .
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In conclusion: The map Φ: X → X∗∗ is a linear isometry, namely ‖Φ(x)‖ = ‖x‖X . In
particular Φ is injective and its image is a subspace of X∗∗ isometrically isomorphic to X .

Corollary 71. Some corollaries from the above construction.

1. If dimX =∞, then dimX∗ =∞ as well.

2. if X is a B-space, then Φ(X) is closed in X∗∗.

3. More generally, if X is a normed space, then Φ(X) is a metric completion of X . In
particular every normed spaces can be extended to a Banach space.

Proof. If dimX∗ = n, then dimX∗∗ = n as well. But Φ(X) has infinite dimensional, which
is a contradiction.

If X is a B-space, taking a convergent sequence yn → y in Φ(X), let xn = Φ−1(yn). Then
xn is a convergent sequence in X , because X is a B-space. Let x be the limit in X of xn, the
by continuity of Φ, Φ(x) = y as wanted.

Definition 72. We say that a normed space X is reflexive if Φ is onto X∗∗.1

Proposition 73. Suppose that X is a reflexive space, then X is separable if and only if X∗ is
separable.

Proof. IfX∗ is separable, thenX is separable as we proved before. IfX is separable, thenX∗∗
is separable, and therefore X∗ is separable.

5.2.1 Families of Functionals and Bilinear Forms
Recall the uniform boundedness theorem. If X is an F-space and {fa}a∈A ⊆ X∗, then if
for every x ∈ X , supa∈A |fa(x)| < ∞, then there is some open ball U around 0 such that
supa∈A supx∈U |fa(x)| <∞. In particular if X is a B-space it follows that supa∈A ‖fa‖ <∞.

Corollary 74. If {fn}∞n=1 ⊆ X∗ andX is a B-space, and suppose fn(x)→ f(x) for all x ∈ X .
Then:

1. f ∈ X∗.

2. ‖f‖ ≤ lim infn→∞ ‖fn‖.

Definition 75. Q : X × Y → C is called a bilinear form if for every x ∈ X and y ∈ Y , the
functional Q(x, ·) and Q(·, y) are linear functionals from X and Y respectively.

Theorem 76. Let X and Y be B-spaces, and Q a bilinear form such that Q(x, ·) ∈ X∗ and
Q(·, y) ∈ Y ∗ for all x ∈ X and y ∈ Y . Then Q is continuous on X × Y .

Proof. It suffices to prove continuity at (0, 0). Let U = BX(0, 1) the open unit ball inX . Con-
sider the family of functionals on Y , {fx}x∈U defined as fx(y) = Q(x, y). By the assumption
each fx ∈ Y ∗.

1Note that a reflexive space is necessarily Banach.
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For a fixed y, supx∈U |fx(y)| <∞ by the continuity ofQ(·, y). By the uniform boundedness
theorem there is some V = BY (0, r) such that supx∈U supy∈V |fx(y)| = M < ∞. In other
words, supx∈U supy∈V |Q(x, y)| = M <∞. In particular for every ε > 0,

sup
x∈ε·U

sup
y∈ε·V

|Q(x, y)| = Mε2.

Therefore in ε · U × ε · V ⊆ X × Y , for all (x, y) in that neighborhood |Q(x, y)| ≤Mε2.

Corollary 77. In particular, ifX and Y are B-spaces andQ is a bilinear form onX × Y , then
there is some c > 0 such that:

|Q(x, y)| ≤ c‖x‖X‖y‖Y .

If we take U and V as the open unit balls of X and Y as in the previous proofs, c = M .

Example 78. Let X = C(0, 1) be the complex-valued continuous functions on (0, 1). Let
{xk}∞k=1 ⊆ (0, 1) a sequence of points such that for all f ∈ C(0, 1), supk |f(xk)| < ∞. Then
there is some compact set K b (0, 1) such that xk ∈ K for all k ∈ N.

For each k, consider the evaluation functional, φx(f) = f(xk). It is a continuous linear
functional on X . By the assumption, supk |φk(f)| <∞.

If X is a normed space, then f ∈ X∗ if and only if |f(x)| ≤ ‖f‖ · ‖x‖X . In particular f is
bounded on every open ball BX(0, r). Consider any F-space, e.g. X = C(Ω) where Ω ⊆ Rn

some open domain, with the usual semi-norms pK(f) = maxK |f(x)| for K b Ω. Fix an
exhausting sequence Ki and let pi be pKi , these semi-norms induce a complete metric on X .

For every y ∈ Ω the point evaluation ϕy(f) := f(y) is a continuous linear functional onX .
Consider the open ball BX(0, 3

4
), then the neighborhood {f | p1(f) < 1

4
} ⊆ BX(0, 3

4
) because

for every f like that, d(f, 0) < 3
4
by definition of the metric. Take ϕy(f) := f(y) for some

y /∈ K1, then for every α� 1 there is some f ∈ BX(0, 3
4
) and f(y) = α.

This means that ϕy is not bounded on BX(0, 3
4
), since supf∈BX(0, 3

4
) |ϕy(f)| = ∞. This

means that for F-spaces the continuity of linear functionals is not the same as being bounded
on every open ball. Note that this is not contradicting the fact that the continuity of ϕ ∈ X∗
implies that for every ε > 0 some δ > 0 such that supf∈BX(0,δ) |ϕ(f)| < ε.

We return to continuity of bilinear forms onX×Y . The above shows that the proof of Theo-
rem76 cannot be salvaged for F-space, sincewe use the fact that for every y, supx∈U |fx(y)| <∞.
However we can use the metric of F-spaces to prove the theorem for F-spaces.

Proof of Theorem 76 for F-spaces. SinceX × Y is metric, it is enough to check that whenever
(xn, yn) → (0, 0) we have that Q(xn, yn) → 0 as well. Define for every n, fn(y) := Q(xn, y)
and f(y) := Q(0, y), then f, fn ∈ Y ∗ by the assumption on continuity for each variable.
Now for every y ∈ Y , fn(y) → f(y) in Y ∗. Then for every y ∈ Y we have now that
supn |fn(y)| < ∞, and by the completeness of Y there is some open ball V = BY (0, δ) such
that supn supy∈V |fn(y)| < ∞. Thus, we have that |Q(xn, yn)| = |fn(yn)| < ε for δ small
enough and ε→ 0 gives us the wanted result.
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Chapter 6

Lebesgue Spaces

Let (Ω,Σ, µ) be a measure space, with µ being a non-negative σ-finite measure. We consider
Lp(Ω,Σ, µ) for 1 ≤ p ≤ ∞, and when the measure and σ-algebra is clear from context (which
is usually the case) we write Lp(Ω). We define:

• For p <∞, Lp(Ω) = {f : Ω→ C | f measurable and
∫

Ω
|f |p dµ <∞}. And we define

‖f‖p = (
∫

Ω
|f |p dµ)1/p.

• For p = ∞, L∞(Ω) = {f : Ω → C | f measurable and ess supΩ |f | < ∞}. Where
ess sup is the infinimum of the supremum on co-null sets. Namely L∞(Ω) is the measur-
able functions which are bounded almost everywhere. Similarly, ‖f‖∞ = ess supΩ |f |.

We investigate the basic properties of Lp spaces, the case of p =∞ is generally much easier
than p <∞, and we ignore it here almost entirely unless explicitly said otherwise.

Proposition 79 (Minkowski inequality). For p <∞, ‖ · ‖p satisfies the triangle inequality (and
therefore a normed space).

Proof. Take f, g ∈ Lp, define f0 by |f(x)| = ‖f‖pf0(p) and similarly define g0 (without loss
of generality, ‖f‖p, ‖g‖p > 0). We have now that:

f(x) + g(x)|p = |‖f‖pf0(x) + ‖g‖pg0(x)|p

= (‖f‖p + ‖g‖p)p
∣∣∣∣ ‖f‖p
‖f‖p + ‖g‖p

f0(x) +
‖g‖p

‖f‖p + ‖g‖p
g0(x)

∣∣∣∣p
≤ (‖f‖p + ‖g‖p)p

(
‖f‖p

‖f‖p + ‖g‖p
f0(x)p +

‖g‖p
‖f‖p + ‖g‖p

g0(x)p
)

Now integrating gives us that
∫

Ω
|f + g|p d µ ≤ (‖f‖p + ‖g‖p)p and therefore ‖f + g‖p ≤

‖f‖p + ‖g‖p as wanted, and in particular f + g ∈ Lp as well.

Proposition 80 (Riesz-Fischer Theorem). For p <∞, Lp is a complete normed space.

Proof. Let {fn}∞n=1 ⊆ Lp be a Cauchy sequence. Without loss of generality we may assume
that ‖fn− fn+1‖p < 2−n, otherwise dilute the sequence. Consider for eachN ∈ N the function
gN(x) =

∑N
n=1 |fn+1(x)− fn(x)|, for everyN we have that ‖gN‖p ≤

∑N
n=1 ‖fn+1− fn‖p ≤ 1.

Moreover it is easy to see that gN(x) ≥ 0 for any x.
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Therefore for every x ∈ Ω, {gN(x)}∞N=1 is increasing and supN
∫
|gN(x)|p d µ < ∞. By

the monotone convergence theorem we have some g such that gN(x) ↑ g(x) and g(x) < ∞
almost everywhere, and also ‖g‖p ≤ 1.

Consider now the series, for every fixed x,
∑∞

n=1 fn+1(x)− fn(x) is absolutely convergent
almost everywhere. But this is a telescopic series, and so it converges to some f(x) almost
everywhere, and |f(x)| ≤ g(x) + |f1(x)| for all x ∈ Ω.

We have, if so, that 0
a.e←− |fn(x)− f(x)|p ≤ 2||f1(x)|+ g(x)|p But the right hand side is an

integrable function, and by the triangle inequality f ∈ Lp. Finally, using Lebesgue’s dominated
convergence theorem

∫
Ω
|fn − f |p d µ → 0, so ‖fn − f‖p → 0 as well, therefore the Cauchy

sequence converges to f .

The above proof can be modified for p = ∞ as follows, by the Cauchy condition we have
that ess supx∈Ω |fn(x) − fm(x)| < ε for large enough n > m, define f as the pointwise limit,
and then we can show that ess sup |f | <∞ and ess sup |f − fn| → 0.

Definition 81. Define on N the counting measure µ such that for all n ∈ N, µ({n}) = 1. We
write `p(N) := Lp(N,P(N), µ).

6.1 Hölder Inequality
Suppose that 1 < p <∞ and let q = p−1

p
, namely 1

p
+ 1

q
= 1. Then for every a, b ≥ 0 we have

that ab ≤ ap

p
+ bq

q
.

More generally, if a1, . . . , an ≥ 0, and p1, . . . , pn such that
∑n

i=1
1
pi

= 1, then we have that∏n
i=1 ai ≤

∑n
i=1

a
pi
i

pi
.

Proposition 82. Suppose that f ∈ Lp and g ∈ Lq, such that 1
p

+ 1
q

= 1. Then we have that∫
Ω

|fg dµ| ≤ ‖f‖p‖g‖q.

Proof. The case for p = ∞ (or p = 1) is trivial:
∫

Ω
|fg| d µ ≤ ‖f‖∞

∫
Ω
|g| d µ. So we may

assume 1 < p, q <∞. Take α > 0 and have that

|f(x)g(x)| =
∣∣∣∣f(x)

α
· αg(x)

∣∣∣∣ ≤ |f(x)|p

pαp
+
αq|g(x)|q

q
.

Therefore we have that, ∫
Ω

|fg| dµ ≤ 1

pαp
‖f‖pp +

αq

q
‖g‖qq.

If we have that ‖f‖
p
p

αp
= αq‖g‖qq, then we have that αp+q =

‖f‖pp
‖g‖qq

. From this follows that

αp = (αp+q)
p
p+q =

(‖f‖pp
‖g‖qq

) 1
q

=
‖f‖p/qp

‖g‖q
.

Returning to the integral and the inequality after choosing the appropriate α, we have that:

1

pαp
‖f‖pp +

αq

q
‖g‖qq =

(
1

p
+

1

q

)
‖g‖q
‖f‖p/qp

‖f‖
p− p

q
p = ‖f‖p‖g‖q.
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Corollary 83. If g ∈ Lq then it defines a continuous linear functional on Lp by defining

Fg(f) =

∫
Ω

fg dµ.

Moreover ‖Fg‖ = ‖g‖q.

Proof. The only nontrivial part is showing that ‖Fg‖ ≥ ‖g‖q. We take h(x) such that |h(x)| = 1
and h(x)g(x) = |g(x)|. Define f(x) = |g(x)|q−1h(x). Then f ∈ Lp, since we have that:

|f(x)|p = |g(x)|p(q−1) = |g(x)|q.

Moreover we have that ‖f‖p = ‖g‖q/pq . Calculating Fg(f) we can see that the result is in fact
‖g‖qq, and therefore

‖Fg‖ ≥
‖g‖qq
‖f‖p

=
‖g‖qq
‖g‖q/pq

= ‖g‖q.

Corollary 84. The above holds also for p = 1 and q =∞, and for p =∞ and q = 1.

Proof. We first deal with p = 1. Again the only nontrivial part is showing ‖Fg‖ = ‖g‖∞ = M .
Fix ε > 0, and Eε such that µ(Eε) > 0 and {|g(x)| > M − ε | x ∈ Eε}. Let h(x) = sgn g(x),
so g(x)h(x) = |g(x)|. Define f(x) = χEε ·

h(x)
µ(Eε)

. Then ‖f‖1 = 1 and we have that:∫
Ω

fg dµ =
1

µ(Eε)

∫
Eε

|g(x)| dµ ≥ 1

µ(Eε)
· (M − ε) = M − ε.

It follows that ‖Fg‖ ≥M − ε for all ε > 0, and thus ‖Fg‖ = ‖g‖∞ = M .
Next we deal with p =∞ and q = 1. Now g ∈ L1, and we want to show that ‖Fg‖ = ‖g‖1.

Define f(x) = χE · h(x) where h = sgn g. It follows that Fg(f) =
∫
E
|g| d µ, and therefore

‖Fg‖ ≥ supE∈Σ

∫
E
|g| dµ = ‖g‖1.

It follows, if so, that the map taking g ∈ Lq to Fg ∈ (Lp)∗ is a linear isometry. And in fact
the following theorem shows that it is also surjective, at least when p <∞.

6.2 Riesz Theorem
Theorem 85 (Riesz Theorem). Let 1 ≤ p <∞. Then for every continuous functional F on Lp,
there is some g ∈ Lq such that F = Fg, as defined above.

Proof. We begin by reducing the case where F only gives real values. If we know that for every
real-valued functional on the real-valued version of Lp the theorem is true, and F is a complex-
valued functional onLp, thenF (f) = ReF (f)+i ImF (f). We takeF1 = ReF andF2 = ImF
andwe get thatF = F1+iF2, and then there are g1, g2 such thatF (f) =

∫
Ω
g1f dµ+i

∫
Ω
g2f dµ.

And now F (f) = F (Re f) + iF (Im f) =
∫

Ω
gf dµ and the conclusion follows.

Lemma 86. Suppose that 1 ≤ p <∞, the simple functions are dense in Lp.
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Proof. Suppose that f ≥ 0, then there is a sequence of simple functions 0 ≤ ϕn ↑ f almost
everywhere. Therefore,

∀n,
∫

Ω

ϕp ≤
∫

Ω

fp <∞.

Therefore |ϕn − f |p ≤ 2pfp implies that
∫

Ω
|ϕn − f |p → 0 (almost everywhere).

If f is an arbitrary real-valued function, we define f+ and f− in the usual way, and apply
the previous part to each on separately.

Lemma 87. Suppose that µ(Ω) < ∞ and g is a function such that for every simple function
it holds that |

∫
Ω
gϕ d µ| ≤ M‖ϕ‖p, when M > 0 is some constant. Then g ∈ Lq(Ω) and

‖g‖q ≤M .

Proof. First we prove for p > 1. Let {ψn}∞n=1 a sequence of non-negative simple functions such
that ψn ↑ |g|q. Define now ϕn = ψ

1/p
n sgn g. Then these are also simple functions and we have

that:
0 ≤ ϕng = ψ1/p

n |g| ≥ ψ1/p
n ψ1/q

n = ψn.

Therefore, ∫
Ω

ψn dµ ≤
∫

Ω

ϕng dµ ≤M‖ϕn‖p.

But we also have that
∫

Ω
|ϕn|p dµ =

∫
Ω
ψn dµ, so ‖ϕn‖p = (

∫
Ω
ψn dµ)1/p and therefore,∫

Ω

ψn dµ ≤M

(∫
Ω

ψn dµ

)1/p

=⇒
(∫

Ω

ψn dµ

)1/q

≤M.

Using the monotone convergence theorem we obtain that |g| ∈ Lq, so g ∈ Lq as well and
‖g‖q ≤M as wanted.

If p = 1, then |
∫

Ω
gϕ dµ| ≤M‖ϕ‖1 for every simple ϕ. In particular if ϕ = χE sgn g then∫

E
|g| dµ ≤ Mµ(E). Now consider E = {x | δ + M < |g(x)|} for some fixed δ > 0. Then

we have that:
(M + δ)µ(E) ≤

∫
E

|g| dµ ≤Mµ(E) =⇒ µ(E) = 0.

Therefore g ∈ L∞ and ess sup |g| = ‖g‖∞ ≤M .

Lemma 88. LetE ∈ Σ andE =
⋃∞
n=1 En, such that {En | n ∈ N} ⊆ Σ is a family of pairwise

disjoint sets. Let f be a function, we write fn = fχEn . Then the following equivalence holds:

f ∈ Lp(E) ⇐⇒
∞∑
n=1

‖fn‖pp <∞,

and in that case f =
∑∞

n=1 fn in L
p(E).

Proof. If f ∈ Lp(E) then for every N ∈ N we have that:

∞ >

∫
E

|f |p dµ ≥
∫
E

N∑
n=1

|fn|p dµ =

∫
E

∣∣∣∣∣
N∑
n=1

fn

∣∣∣∣∣
p

dµ.
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Therefore the conclusion follows. On the other hand, if
∑∞

n=1

∫
En
|fn|p d µ < ∞ then by the

monotone convergence theorem,
∑∞

n=1 ‖fn‖pp <∞, then
∑N

n=1 |fn|p ↑ |f |p. Therefore,

∞∑
n=1

∫
Ω

|fn|p dµ =
∞∑
n=1

∫
En

|fn|p dµ =

∫
E

|f |p dµ.

In particular
∑N

n=1 fn → f in Lp(E).

We can start the proof of Riesz’ theorem now. We remark, again, that our functions (and
spaces) are real. We also know that the map g 7→ Fg is an isometry, so every functional in (Lp)∗

has at most one g ∈ Lq matching it.
We first consider the case where µ(Ω) < ∞. Let F ∈ (Lp)∗, then for every E ∈ Σ

define ν(E) := F (χE). If E =
⋃∞
n=1En, where the En’s are pairwise disjointm define

αn = sgn(χEn), and consider the function f defined as
∑∞

n=1 αnχEn . From the third lemma,
we have that ‖fn = αnχ(En)‖p = µ(En)1/p. Therefore:

∞∑
n=1

‖fn‖pp = ‖f‖pp.

So we have that
∑N

n=1 fn → f in Lp. By continuity of F we have that F (
∑N

n=1 fn) → F (f),
and so

F (f)←
N∑
n=1

F (χEn)F (χEn) =
N∑
n=1

αnν(En) =
N∑
n=1

|ν(En)|.

And therefore
∑∞

n=1 ν(En) is absolutely convergent. On the other hand,
∑∞

n=1 χEn = χE (as a
sum in Lp). So F (

∑N
n=1 χEn)→ F (χE), so

∑∞
n=1 ν(En) = ν(E).

Therefore ν(E) is a finite measure (although perhaps not non-negative). We have that
|F (αχE)| ≤ ‖F‖‖χE‖p ≤ ‖F‖µ(Ω)1/p. Moreover if µ(E) = 0 then χE = 0 in Lp, so
F (χE) = 0 and in that case ν(E) = 0 as well. We have that ν � µ (ν is absolutely continuous
with respect to µ1), and the Radon-Nikodym Theorem implies there is g ∈ L1(Ω,Σ, µ) such
that ν(E) =

∫
E
g dµ =

∫
Ω
gχE dµ.

Now by finite additivity, for every simple function ϕ we have that F (ϕ) =
∫

Ω
gϕ d µ. By

the continuity of F we have that ‖F‖‖ϕ‖p ≥ |F (ϕ)|.
Using the second lemma we have that g ∈ Lq and ‖g‖q ≤ ‖F‖. Consider now Fg ∈ (Lp)∗,

then for every simple function ϕ, F (ϕ) = Fg(ϕ). By the first lemma, the simple functions are
dense in Lp, and since F and Fg are continuous and agree on a dense subset they are equal.

Now suppose that µ(Ω) = ∞, by σ-finiteness there are Σn ↑ Ω such that µ(Σn) is finite.
We repeat the proof on each Ωn, to obtain gn ∈ Lq(Ω) such that gn = gnχΩn . If so, for every
f ∈ Lp(Ωn) we have that

F (f) =

∫
Ωn

fg dµ.

As we assume that Ωn ⊆ Ωn+1, this gives us a sequence gn in Lq such that gn+1 �Ωn= gn. So
the function g(x) = gn(x) for some n such that x ∈ Ωn is a well-defined function. Moreover
if f ∈ Lp(Ωn) we have F (f) =

∫
Ω
gf d µ. And this completes the proof by convergence

theorem.
1So every µ-null set is ν-null as well.
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6.2.1 Some remarks
It is known that L∞(Ω) ⊇ L1(Ω), since if g ∈ L1, then for Fg(f) =

∫
Ω
fg d µ we get from

Hölder’s inequality that |F (f)| ≤ ‖f‖∞‖g‖1 =⇒ ‖F‖ ≤ ‖g‖1. Moreover we actually get
‖F‖ = ‖g‖1.

Suppose that L1 = (L∞)∗, take for example Ω = R and µ the Borel measure. Then L1 is
separable, for example by simple functions with rational values. This means that L∞ has to
be separable as well. But this is not the case, since ϕ(t) = χ≤t is an uncountable family of
functions in L∞ such that for t 6= s, ‖ϕt − ϕ − s‖∞ = 1. So we cannot prove that equality
holds regardless to the measure space.

Consider next `p spaces. Then f ∈ `p if and only if
∑∞

n=1 |f(n)|p < ∞. In this case we
also have that `1 6= (`∞)∗ by considering the characteristics functions of subsets ofN. However,
`1 = c∗ and `1 = c∗0.2

2It is consistent, however, without the axiom of choice that `1 = (`∞)∗.
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Chapter 7

Weak Topologies

7.1 The Weak Topology on Normed Spaces
LetX be a normed space with ‖ · ‖X its norm. Recall thatX∗ is a Banach space and for f ∈ X∗
we have that |f(x)| ≤ ‖f‖‖x‖X . Additionally there is a linear isometry Φ: X → X∗∗ defined
by Φ(x)(f) = f(x). If Φ is onto X∗∗ we say that X is reflexive.

An immediate conclusion from the previous chapter we have that Lp is reflexive for 1 <
p <∞. Moreover for p = 2, L2 = (L2)∗.

Note that if f ∈ X∗ then |f(x)| is a semi-norm on X .

Definition 89 (Weak topology). Given a normed spaceX , theweak topology onX is the locally
convex topology defined from {|f(x)| | f ∈ X∗}.

Recall that an open neighborhood U of 0 in the weak topology is given by f1, . . . , fn ∈ X∗
and ε1, . . . , εn > 0 so U = U ε1,...,εn

f1,...,fn
= {x | |fi(x)| < εi}. Because there are uncountably many

f ’s it is often the case the weak topology is not Frechét.

Proposition 90. The weak topology is weaker than the normed topology. Namely, every open
set in the weak topology is open in the normed topology.

Proof. It suffices to consider neighborhoods of 0. If U ε1,...,εn
f1,...,fn

is an open neighborhood of 0,
then it is the intersection of preimages |fi|−1((−εi, εi)). By the definition we have that fi is
continuous, so this is a finite intersection of open sets in the normed topology.

Example 91. Suppose that {xn}∞n=1 weakly converges to x. Then for every f ∈ X∗ we have
that limn→∞ f(xn) = f(x).

This is because whenever U is an open neighborhood of x, then for every ε > 0 there is
some N such that for all n > N , |f(x − xn)| < ε. But it is clear now that in fact {xn}∞n=1

weakly converges to x if and only if for every f ∈ X∗, f(xn)→ f(x).

It is also clear that if ‖xn−x‖X → 0, then xn weakly converges to x. We will write xn
w−→ x

to denote weak convergence.

Proposition 92. Let xn
w−→ x, then the following is true:

1. sup{‖xn‖X | n ∈ N} <∞.
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2. ‖x‖X ≤ lim inf ‖xn‖X .

Proof. Recall that for every f ∈ X∗, f(xn) → f(x). Consider the canonical embedding
Φ: X → X∗∗. Then Φ(xn)(f) → Φ(x)(f), for every f ∈ X∗. Since X∗ is complete we can
apply the uniform boundedness theorem to have that supn ‖Φ(xn)‖ < ∞ so sup ‖xn‖ < ∞
since Φ is norm-preserving.

The second point follows from the fact that ‖T‖ ≤ lim inf ‖Tn‖ when Tn(y)→ T (y) for all
y ∈ Y whenever T is continuous from some Banach spaceX to a normed space. Take Y = X∗

and Tn = Φ(xn), and we get again the second inequality by the norm-preservation of Φ.

Suppose that {fn}∞n=1 ⊆ Lp for 1 ≤ p < ∞, and suppose that there is some f ∈ Lp so for
every g ∈ Lq:

lim
n→∞

∫
Ω

fng dµ =

∫
Ω

fg dµ.

In other words, fn
w−→ f in Lp (endowed with the weak topology). Then we have by the previous

proposition that:

1. supn ‖fn‖p <∞.

2. ‖f‖p ≤ lim infn→∞ ‖fn‖p.

Proposition 93. LetM ⊆ X be a closed subspace in the normed topology. ThenM is also a
closed subspace in the weak topology.

Proof. Let M such subspace and y /∈ M , then there is some f ∈ X∗ such that f � M = 0
and f(y) = 1. Now the weak-open set U = {v | |f(y − v)| < 1

2
} is disjoint from M , since

whenever m ∈ M we have that f(y −m) = f(y) = 1, and y ∈ U . So M is weak-closed as
wanted.

This generalizes nicely to the following proposition.

Proposition 94. Let K ⊆ X a convex and balanced which is closed in the normed topology.
Then K is closed in the weak topology as well.

Proof. Let y ∈ X \K. By the regularity of X we can extend K slightly to make it absorbing
as well while not adding y. So we can apply Mazur’s theorem, and find f ∈ X∗ such that
|f(x)| ≤ 1 for x ∈ K and f(y) = 1 + δ > 1. Consider the weak-open neighborhood of y,
U = {v | |f(y − v)| < δ}, by a similar argument as before U is open and disjoint from K as
wanted.

It follows that BX(0, r) = {x ∈ X | ‖x‖X ≤ r} is weak-closed.

Proposition 95. If c > 0 is a constant, and {x ∈ X | c < |f(x)|} for some fixed f ∈ X∗ is
weak-open.

Proof. Fix x0 ∈ X such that |f(x0)| > c, we want to find a weak-open set U such that
x0 ∈ U and for all x ∈ U , |f(x)| > c as well. Denote by δ = |f(x0)| − c > 0, and consider
V = {x | |f(x)| < δ/2}, and let U = x0 + V . Then whenever y ∈ U we have that y− x0 ∈ V ,
so |f(y− x0)| < δ

2
and therefore |f(y)− f(x0)| < δ

2
, so |f(y)| > c+ δ

2
, so U is as wanted.

Proposition 96. Let {xn}∞n=1 ⊆ X and x ∈ X such that: supn ‖xn‖X < ∞, and there is a
[normed-]dense set Y ⊆ X∗ such that for all g ∈ Y , limn g(xn)→ g(x). Then xn

w−→ x.
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7.2 Weak Convergence in Lebesgue Spaces
Suppose that 1 ≤ p < ∞, and q such that 1

p
+ 1

q
= 1, we know that Lq = (Lp)∗. This means

that {fn}∞n=1 ⊆ Lp is weakly convergent to f if for all g ∈ Lq,∫
Ω

gfn dµ→
∫

Ω

gf dµ.

In particular, supn ‖fn‖p <∞ and ‖f‖p ≤ lim infn ‖fn‖p. In general the uniform boundedness
theorem tells us that if {

∫
gfn}∞n=1 is bounded for all g ∈ Lq, then sup ‖fn‖p <∞.

What happens if p =∞? Suppose that {fn}∞n=1 ⊆ L∞, and for every g ∈ L1 the sequence∫
gfn is bounded. Does that mean that ‖fn‖∞ is bounded? Since L∞ = (L1)∗ we can consider
{fn}∞n=1 as continuous functionals on L1, and we are given that the sequences {

∫
Ω
fng}∞n=1 is

bounded for every g ∈ L1, so uniform boundedness gives us that ‖fn‖∞ is indeed bounded.

Let Ω = S1, the unit circle in C, with µ being the usual Lebesgue measure on it, given by
rotations. Consider now the sequence {einθ}∞n=0. Take ϕ(θ) ∈ C1(S1) and consider:∫

S1

ϕ(θ)einθ dθ =
1

in

∫
S1

ϕ(θ)
d

dθ
(einθ) dθ = − 1

in

∫
S1

ϕ′(θ)einθ dθ
n→∞−−−→ 0,

Consider the einθ as elements of L2 (as bounded functions they belong to every Lp). It follows
that ‖einθ‖2 =

√
2π. So from the last proposition, X = L2(S1) and ϕ ∈ C1 defines g ∈ L2

(here Y = C1(S1) is dense there). We get the following theorem as an easy corollary.

Theorem 97 (Riemann-Lebesgue Lemma). For every g ∈ L2(S1) we have that

lim
n→∞

∫
g(θ)einθ dθ = 0.

In addition we get that for every g ∈ L∞(S1) the Riemann-Lebesgue lemma holds (since
L∞(S1) ⊆ L2(S1)). But now einθ ∈ L1(S1) is a functional on L∞(S1), and therefore einθ w−→ 0
in L1(S1). On the other hand, ‖einθ‖1 = 2π, so it is certainly not the case that einθ 6→ 0 in
L1(S1), so it follows that the sequence einθ cannot converge in norm to anything. Therefore in
L1(S1) weak convergence need not imply strong convergence.1

7.3 Back in the General Setting
We saw that a normed space X carries two topologies, strong (normed) and weak. Both
topologies make it into a locally convex space. We can ask, if so, what are the continuous
functionals on each of them.

Proposition 98. If f : X → C is a linear functional, then it is strongly continuous2 if and only
if it is weakly continuous.

1This property is called the Schur property, and therefore L1(S1) does not have the Schur property.
2Continuous in the normed topology.
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Proof. Suppose that f ∈ X∗, namely f is strongly continuous. Fix ε > 0 and consider
f−1(BC(0, ε)) = {x | |f(x)| < ε}, and by definition of the weak topology it is an open
neighborhood of 0. So f is weakly continuous at 0, and by linearity f is weakly continuous.
The other direction is trivial.

In general the weak topology is the weakest topology such that every f ∈ X∗ is still
continuous in that topology.

Theorem 99. LetX and Y be normed spaces, then T : X → Y linear is continuous with respect
to both normed topologies if and only if it is continuous with respect to both weak topologies.
Namely B(X, Y ) = B(Xw, Yw), where Xw and Yw denote the weak topologies.

Proof. Let T ∈ B(X, Y ) and we want to show that whenever V is weakly open in Y , T−1(V )
is weakly open in X . We can assume that V = V ε1,...,εn

g1,...,gn
, then we are looking for U = U δ1,...,δm

f1,...,fm

weakly open in X such that T (U) ⊆ V .
Let fi = gi ◦ T for i < n (so m = n in our case). By the fact that T and gi are

strongly continuous we have that fi ∈ X∗. Taking δi = εi gives us that if x ∈ U the
|gi(Tx)| = |fi(x)| < εi, so Tx ∈ V as wanted.

In the other direction assume that X and Y are Banach, if T is continuous with respect to
the weak topologies, we will show that G(T ) is closed and by the closed graph theorem T is
continuous.

Let 〈xn, Txn〉 → 〈x, y〉, we want to show that Tx = y, but for every linear function g ∈ Y ∗
we have that g : T is continuous on Xw. Therefore (g ◦ T )(xn) → g(y). So g(Tx) = g(y) for
every g ∈ Y ∗, and by the fact that functionals on Y separate points gives us that Tx = y as
wanted.

If X and Y are not assumed to be Banach spaces, we first prove the following lemma.

Lemma 100. If T : X → Y is linear, and for every g ∈ Y ∗, g ◦ T ∈ X∗, then T is continuous.

Proof. Define the following bilinear form on X × Y ∗, Q(x, g) = g(Tx). It is not hard to see
that Q is linear and that for every x ∈ X we have that Q(x, ·) = Φ(Tx) ∈ Y ∗∗ and also the
assumption tells us that for every g ∈ Y ∗, Q(·, g) ∈ X∗. By a theorem we proved it means that
Q is a continuous bilinear form.

Take xn → 0 in X , then we have that Q(xn, ·)→ Q(0, ·) = Φ(T (0)) = Φ(0) = 0. Since Φ
is an isometry from Y into Y ∗∗ it follows that Txn → 0 in Y as wanted.

Using the lemma , if T is continuous in the weak topologies the condition of the lemma
holds and therefore T has to be continuous.

Recall that ifX and Y are normed spaces, then ΦX(X) and ΦY (Y ) are Banach completions
ofX and Y respectively. If T is continuous betweenX and Y , then it is Lipschitz and therefore
can be extended to the Banach completions. We can now askwhether or not a weakly continuous
operator betweenX and Y can be extended to the weak topologies of their Banach completion.
The theorem we proved above indeed tells us that the answer is positive.
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7.4 The Weak-* Topology
We begin this section with a lemma.

Lemma 101. Let X be a linear space, and suppose that f1, . . . , fn are linear functions and
f a linear functional with the following property: For fixed ε1, . . . , εn, if |fi(x)| < εi then
|f(x)| < 1. Then f is a linear combination of the fi’s.

Proof. First, observe that
⋂n
i=1 ker(fi) ⊆ ker(f). Define a linear operator T : X → Cn by

Tx = 〈f1(x), . . . , fn(x)〉, this is a linear operator, and let L be the image of T . We define
ϕ : L→ C byϕ(x) = f(x), this is a linear functional onL. We can now extendϕ to a functional
on Cn, so ϕ(z1, . . . , zn) =

∑
αizi so f(x) =

∑
αif(xi).

Suppose that X is a linear space and F is a separating family of linear functionals on X .
Then F defines a locally convex topology τF onX given by the semi-norms, |f(x)| for f ∈ F .
If f is a linear functional with respect to τF then f is a linear combination of elements from F .

Definition 102. Given a normed spaceX , the weak-∗ topology is the topology onX∗ given by
the linear functionals in X∗∗ obtained from the natural embedding Φ: X → X∗∗.

Note thatF = {Φ(x) | x ∈ X} is separating forX∗ since whenever f(x) = 0 for all x ∈ X ,
f = 0, so if Φ(x)(f) = 0 for all x, it follows that f = 0.

Theorem 103 (Banach-Alouglu Theorem). Let B∗ = {f ∈ X∗ | ‖f‖ ≤ 1} the unit ball ofX∗.
Then B∗ is compact in the weak-∗ topology.

Proof. Define a function on B∗ mapping f to 〈f(x) | x ∈ X〉. This is a continuous embedding
of B∗ into

∏
x∈X D(0, ‖x‖X), where D(0, ‖x‖X) is the closed disc around 0 of radius ‖x‖X .

The codomain is compact by Tychonoff’s theorem, so it remains to show that the image of the
embedding is closed. Let g ∈ B∗ (the closure as computed in the product). If x ∈ X and ε > 0,
then there is some f ∈ B∗ such that |f(x)− g(x)| < ε. But by definition of f ∈ X∗ it follows
that |f(x)| ≤ ‖x‖X . Therefore |g(x)| ≤ ‖x‖X for all x ∈ X .

It remains to show that g is indeed linear. If x, y, z ∈ X and ε > 0 then there is some f ∈ B∗
such that |f(x) − g(x)|, |f(y) − g(y)|, |f(z) − g(z)| < ε. But f is linear, so if z = αx + βy,
then f(z) = αf(x) + βf(z). By ε-manipulations we obtain that

|g(αx+ βy)− αg(x)− βg(y)| < ε+ (|α|+ |β|)ε,

so g is also linear as wanted.

Corollary 104. LetX be a normed space. ThenX is linearly isometric to a subspace of C(K)
for a compact space K.

Proof. Consider the map Φ: X → X∗∗ when considering Φ(x) restricted toB∗, the unit ball of
X∗. This is a linear isometry. The weak-∗ topology was defined as a topology on which Φ(x)
are continuous. Take K = B∗ in the weak-∗ topology, then we have the following equalities:

‖Φ(x)‖C(K) = sup{|Φ(x)(f)| | f ∈ K} = sup{|f(x)| | f ∈ B∗} = ‖x‖X .
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Theorem 105. If X is a normed space then B∗ is metric if and only if X is separable.

Proof. Suppose thatX is separable, let {xn}∞n=1 a dense countable subset. Then ϕn = Φ(xn) is
a separating family of semi-norms onX∗, so the locally convex topology {ϕn | n ∈ N} defines
a metric topology. Denote by τ this topology and τ ∗ the weak-∗ topology. The identity function
is continuous between (B∗, τ ∗)→ (B∗, τ), but a continuous bijection from a compact space to
a Hausdorff space is a homeomorphism. Therefore τ ∗ = τ as wanted.

In the other direction, ifB∗ is metrizable in the weak-∗ then 0 has a countable neighborhood
basis Un = U~εn

Φ(xn1 ),...,Φ(xn
k(n)

. Take D = {xnj | j ≤ k(n), n ∈ N}, this is a countable subset of
X and we claim that span(D) is dense in X . Otherwise there will be some f ∈ X∗ such that
f(x) = 0 for all x ∈ span(D) and ‖f‖ = 1, but then f ∈ Un for all n, therefore f ∈

⋂
Un but

this means f = 0 which is a contradiction.

>From this follows that every normed space X is linearly isometric to a subspace of C(K)
whereK is a compact metric space, and not just a compact space. In particular every continuous
linear functional on X we can match a continuous linear functional on C(K). This means that
every f ∈ X∗ has a Radon measure µf on K which defines its counterpart by

∫
K

d µf (g)
when g ∈ C(K). On the other hand, f(x) = Φ(x)(f) with Φ(x) ∈ C(K) and therefore
f(x) =

∫
K

dµf (Φ(x)).

7.4.1 Some Useful Remarks
Proposition 106. Suppose that X is a complex locally convex vector space. If f : X → R is a
continuous real-linear functional, then there is some continuous linear functional f̃ : X → C
such that Re f̃ = f .

Proof. We define f̃ = f(x)− if(ix). It is enough to check scalar multiplication for i

f̃(ix) = f(ix)− if(−x) = f(ix) + if(x) = if̃(x).

Proposition 107. If f : X → C is continuous and γ ∈ R, then A = {x | Re f(x) > γ} is open
in the weak topology.

Proof. Take x0 ∈ A, so Re f(x) > γ. Take ε = 1
2
(Re f(x) − γ) and look at the weakly

open neighborhood U = {z | |f(z)| < ε}. Then for z ∈ U we have that Re f(x0 + z) =
Re f(x0) + Re f(z) > Re f(x0)− |f(z)| > γ.

Proposition 108. The weak closure of a convex set is convex.

Proof. If Λ ⊆ X is convex, and look at its weak closure Λ. If Λ is not convex then there
are x, y ∈ Λ and some t ∈ (0, 1) such that zt = tx + (1 − t)y /∈ Λ. Then there is some
open neighborhood V of zt such that V ∩ Λ = ∅. Look at the continuous bilinear form
F (u, v) = tu + (1 − t)v, and find Ux, Uy open neighborhoods of x, y respectively such that
F (Ux × Uy) ⊆ V . Now there are u, v ∈ Ux × Uy ∩ Λ × Λ but by the convexity of Λ,
F (u, v) ∈ V ∩ Λ which is a contradiction to the assumption that V ∩ Λ = ∅.

Remark. Not that the weak-∗ topology is not metrizable in general. While it might be that the
closed unit ball is metrizable (and even compact), this metric is not canonical in any way and
degenerates as the ball “grows”.
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7.4.2 Some Concrete Examples
First Example

Suppose that 1 < p <∞, and consider Lp defined on some measure space Ω. We know that q
such that 1

p
+ 1

q
= 1 satisfies that 1 < q <∞ and (Lp)∗∗ = (Lq)∗ = Lp. So Lp is reflexive, and

in particular Lp has the same weak topology and weak-∗ topology.
As a corollary Bp = {f ∈ Lp | ‖f‖p ≤ 1} is weakly compact, and it is metrizable if Lp

is separable. In other words, the weak topology of Lp is determined entirely by sequences. If
fn

w−→ f in Bp, it is convergent if for every g ∈ Lq,
∫

Ω
fng dµ→

∫
Ω
fg dµ.

In particular if E ⊆ Ω such that µ(E) < ∞, then χE ∈ Lq, so taking g = χE we get
immediately that

∫
E
fn dµ→

∫
E
f dµ.

Let T : Lp → Lp is a linear operator such that whenever fn
w−→ f , it follows that Tfn

w−→ Tf .
Then T is weakly continuous, but therefore continuous.

Note that in the case that p =∞ know that L∞ = (L1)∗, so if L1 is separable, the unit ball
of L∞ is compact and metrizable in the weak-∗ topology.

Second Example

Take X = C(K) for some compact metric space K. We know that X∗ = MR(K) is the
space of Radon measures on K. If X is reflexive then X ∼ C(K), then for every x ∈ X we
match Φ(x) ∈ X∗∗. This means that for every f ∈ X∗ we can match a measure µf , so now
f(x) =

∫
K

Φ(x)(g) dµf (g). And here µf = δf is the atomic measure.
Take K = [0, 1] and consider C[0, 1]. Suppose that we take µ ∈ MR([0, 1]) is a positive

measure. Then there is some fµ monotonous on [0, 1] which induces µ. More specifically,
fµ(x) = µ([0, x)). Then if g ∈ C[0, 1] µ is a continuous functional on C[0, 1] and we have that
µ(g) =

∫ 1

0
g(x) dfµ(x). This is the Riemann-Stieltjes integral.

Compactness now tells us that if {fn}∞n=1 is a sequence ofmonotonously increasing functions
such that fn(0) = 0 and supn fn(1) ≤ C, then there is a monotonously increasing function f
such that:3 ∫ 1

0

g(x) dfn(x)→
∫ 1

0

g(x) df(x).

3This is known as Helly’s Selection Theorem.
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Chapter 8

Convexity and Compactness

We go back to locally convex spaces over C. In this chapter, unless stated otherwise X is such
a space.

Proposition 109. Let C ⊆ X a closed convex set and 0 ∈ C and x0 /∈ C. Then there exists a
continuous real-valued linear functional f such that f(x0) > supy∈C f(y).

Proof. Sincex0 /∈ C, there is a convex open neighborhoodV of 0, such thatx0+V ∩C+V = ∅,
so in other words x0 + 2V ∩C = ∅. Now C+V is a convex open neighborhood of 0, therefore
it has a Minkowski functional p. Recall that p(x+ y) ≤ p(x) + p(y) and αp(x) = p(αx) for all
α ≥ 0.

Define f0(βx0) = βp(x0) for all β ∈ R. Then f0 ≤ p on span{x0}. Using the most basic
form of Hahn-Banach we have an extension of f0 to f : X → R which is real-valued linear
functional and f(βx0) = f0(βx0) and |f | ≤ p everywhere. This f is continuous as it is bounded
by p, and it satisfies f(x) ≤ p(x) ≤ 1 for x ∈ C and f(x0) = p(x0) > 1 since x0 /∈ C + V .
Therefore the conclusion follows.

We can extend f obtained in the previous proof to f̃ : X → C such that Re f̃ = f . We can
now reformulate the above proposition as the following corollary.

Corollary 110. There exists f ∈ X∗ such that Re f(x0) > supy∈C Re f(y).

Corollary 111. Every x0 /∈ C has a weakly open neighborhood of x0 disjoint from C.

Corollary 112. Every closed and convex set is weakly closed.

8.1 Extremal Sets
Definition 113. Let S ⊆ K ⊆ X , we say that S is extremal in K if for every x, y ∈ K if for
t ∈ (0, 1), tx + (1− t)y ∈ S, then x, y ∈ S. We say that y ∈ K is an extremal point (in K) if
{y} is extremal in K.

Theorem 114. Let X be a locally convex complex vector space, K ⊆ X is compact. Then K
has an extremal point.
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Proof. Let P = {S ⊆ K | ∅ 6= S compact and extremal}, note that K ∈ P . Consider P as
ordered by reverse inclusion, this partial order satisfies the condition for Zorn’s lemma (note
that extremal sets are closed under intersections).

If f a continuous linear functional, S is compact and extremal in K, let M = maxS Re f
then SM = {x ∈ S | Re f(x) = M} ∈ P . This is true because SM is closed and thus compact,
and if x, y ∈ K and tx+ (1− t)y ∈ SM then:

Re f(tx+ (1− t)y) = tRe f(x) + (1− t) Re f(y) = M.

But since Re f(x) ≤ M and Re f(y) ≤ M it has to be the case that Re f(x) = Re f(y) = M
so x, y ∈ SM .

Let S be the maximal element of P obtained by Zorn’s lemma. If x, y ∈ S then for every
continuous linear function f , Re f(x) = Re f(y) and this implies that x = y.

Theorem 115 (Krein-Milman Theorem). LetK ⊆ X compact and let Λ be the set of extremal
points in K. Then K ⊆ co(Λ).1

Proof. Denote byH the set co(Λ), it is a closed and convex set. Assume towards contradiction
that there is some x0 ∈ K \H . Fix c ∈ H and consider C = H − {c}, as a closed and convex
set with 0 ∈ C, by the lemma we proved there is some f ∈ X∗ such that Re f(x0 − c) >
supz∈H Re f(z − c) which means that Re f(x0) > supz∈H Re f(z).

LetM = maxy∈K Re f(y) and look at KM = {z ∈ K | Re f(z) = M} which is extremal
and compact in K. Our previous theorem tells us that KM has an extremal point b. But this
means that b is extremal in K as well so b ∈ Λ ⊆ H . But we chose f such that for all z ∈ H ,
Re f(z) < Re f(x0) ≤ Re f(b) which is a contradiction.

Corollary 116. If K ⊆ X is compact and convex then K = co(Λ), where Λ is the set of
extremal points in K.

8.2 Examples!
The canonical example here is whenX is a normed space andK = B∗ in the weak-∗ topology.

Example 117. Consider Lp for 1 < p ≤ ∞ with q such that Lp = (Lq)∗. Then the unit ball
in Lp with the weak-∗ topology the closed unit ball is closed in the weak-∗ topology, and it is
compact there. The extremal points are clearly on the unit sphere.

Example 118. Let X = L1[0, 1] and B the closed unit ball. Take f ∈ ∂B, namely ‖f‖1. Take
a ∈ (0, 1) for which

∫ a
0
|f(x)| d x = 1

2
and take g to be 2χ[0,a] · f and h = 2χ[a,1] · f . Then

‖g‖1 = ‖h‖1 = 1. On the other hand f = 1
2
g + 1

2
h and g 6= f, h 6= f . Therefore f is not an

extremal point of B. So B has no extremal points.

Corollary 119. There is no normed space X such that X∗ = L1[0, 1].

We return to the canonical example of B∗ in the weak-∗ topology. So what does it mean?
If ϕ ∈ B∗, namely ‖ϕ‖ ≤ 1, then for every neighborhood V of 0 in the weak-∗ topology

1The co denotes the convex closure.
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there are extremal functionals ψ1, . . . , ψN with ‖ψi‖ = 1, and scalars α1, . . . , αN ∈ [0, 1] and∑N
i=1 αi = 1 such that:

ϕ−
N∑
i=1

αiψi ∈ V.

If X is also separable, then B∗ is metrizable when considering the weak-∗ topology. Then we
can improve the statement and obtain that for every ϕ ∈ B∗ there is a sequence {ψk}∞k=1 and
ψk =

∑Nk
i=1 α

k
i ψ

k
i , with ψki extremal in B∗, and ϕ = limk→∞ ψ

k.

Example 120. TakeX = C[0, 1] andX∗ is the space of Radon measures in [0, 1]. The extremal
points of B∗ are exactly δt for t ∈ [0, 1]. This means that every measure can be approximated
(in the weak-∗ topology) by linear combinations of such δt’s.

But we are in context where B∗ is indeed metrizable and compact. Consider the sequence∑N
i=1

1
N
δj/N , it has a convergent subsequence, so the entire sequence converges, and its limit is

in fact µ = dx the Lebesgue measure. This is because this sequence is just the usual Riemann
sum and on C[0, 1] Riemann integral is the same as Lebesgue integral.

Suppose thatX is a normed space and xn
w−→ x. ConsiderK = co({xn}∞n=1) (weak closure

is taken) then K is convex and weakly compact, and therefore it is convex and closed in the
normed topology. In particular x is a limit point of co({xn}∞n=1) in the strong topology.

This means that for every ε > 0 there is an eventually 0-sequence of αj ∈ [0, 1] such that∥∥∥∥∥x−
∞∑
j=1

αjxj

∥∥∥∥∥
X

< ε.

In particular in X = Lp for 1 < p < ∞, the weak-∗ topology is just the weak topology, if
fj

w−→ f ∈ Lp, and there is a convex linear combination such that∥∥∥∥∥
∞∑
j=1

αjfj − f

∥∥∥∥∥
p

< ε.

38



Chapter 9

Distributions in Finite Dimensions

9.1 Convolutions
Definition 121. If u, v are measurable complex valued functions on Rn, the convolution of u
and v is u ∗ v(x) =

∫
Rn u(x− y)v(y) dy.

Proposition 122. Convolution is commutative, namely u ∗ v = v ∗ u.

Proof. Simply observe the following equality

u ∗ v =

∫
Rn
u(x− y)v(y) dy =

∫
Rn
u(z)v(x− z) dz = v ∗ u.

This is true because over Rn the following holds,
∫
Rn u(y) dy =

∫
Rn u(−y) dy.

Proposition 123. For every 1 ≤ p ≤ ∞, ‖u ∗ v‖p ≤ ‖u‖1‖v‖p.

Proof.

|u ∗ v(x)| ≤
∫
Rn
|u(x− y)v(y)| dy ≤ ‖u‖1‖v‖∞ =⇒ ‖u ∗ v‖∞ ≤ ‖u‖1‖v‖∞.

We also have, by Fubini’s theorem:∫
Rn
|u ∗ v(x)| dx =

∫
Rn

(∫
Rn
|u(x− y)v(y)| dy

)
dx =

∫
Rn

(∫
Rn
|u(x− y)| dx

)
|v(y)| dy.

Therefore ‖u ∗ v‖1 = ‖u‖1‖v‖1.
More generally, if 1 < p < ∞ then we want to approximate ‖v ∗ u‖p, and the following

holds:

|u ∗ v(x)| ≤
∫
Rn
|u(x− y)v(y)| dy

=

∫
Rn
|u(x− y)|1/q|u(x− y)|1/p|v(y)| dy

≤
(∫

Rn
|u(x− y)| dy

)1/q (∫
Rn
|u(x− y)||v(y)|p dy

)1/p
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This implies that |u ∗ v(x)|p ≤ ‖u‖p/q1

∫
Rn |u(x− y)||v(y)|p dy. We integrate again:∫

Rn
|u ∗ v(x)|p dx ≤

∫
Rn

(∫
Rn
|u(x− y)||v(y)|p dy

)
dx · ‖u‖p/q1

= ‖u‖1+p/q
1

∫
Rn
|v(y)|p dy = ‖u‖p1‖v‖pp

Therefore ‖u ∗ v‖p ≤ ‖u‖1‖v‖p whenever 1 ≤ p ≤ ∞.

So if we take p = 1 there is a nice symmetry so ‖u ∗ v‖1 ≤ ‖u‖1‖v‖1 and therefore
convolution turns L1 into an algebra over C.

Definition 124. Let u be function on Rn, we define suppu = {x ∈ Rn | u(x) 6= 0}.

The idea of taking the closure is that we want Rn \ suppu to be the maximal open set on
which u is 0.

Proposition 125. supp(u ∗ v) ⊆ suppu+ supp v.

Proof. Suppose not, and let x be a counterexample. So there is no y ∈ supp v such that
x− y ∈ suppu. So u(x− y)v(y) ≡ 0 for all y ∈ Rn.

Consider the function ϕ̃ defined as:

ϕ̃(x) =

{
exp

(
1

|x|2−1

)
|x| < 1

0 |x| ≥ 1

This ϕ̃ is in C∞(Rn) and supp ϕ̃ = B1(0).We are led to the following definition.

Definition 126. If Ω ⊆ Rn is an open domain and k ≥ 0 a natural number, Ck
0 (Ω) is the set of

all functions u with domain Ω such that u is continuously differentiable up to k, with a compact
support.

Now ϕ̃ as defined above belongs toC∞0 (Rn). Define ϕ(x) = ϕ̃(x)∫
Rn ϕ̃(y) dy

, we have that ϕ ≥ 0,
ϕ ∈ C∞(Rn), suppϕ = B1(0) and

∫
Rn ϕ(x) dx = 1.

Definition 127. Let Ω ⊆ Rn an open domain, then L1
loc(Ω) is the set of all measurable functions

u : Ω→ C, such that for every K b Ω, |u| ∈ L1(K). Such u is said to be locally integrable.

Definition 128. With ϕ ∈ C∞(Rn) as defined above and ε > 0, we define ϕε(x) = ε−nϕ
(
x
ε

)
.

Proposition 129. For ε > 0, suppϕε = Bε(0), and
∫
Rn ϕε = 1.

Proposition 130. Let u ∈ L1
loc(Ω) such that suppu = K b Ω (namely, u ∈ L1(Ω)). Then for

a sufficiently small ε > 0, uε = u ∗ ϕε satisfies:

1. suppuε ⊆ Kε = K +Bε(0), and

2. uε ∈ C∞(Ω).
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Proof. Take 0 < 2ε < d(K, ∂Ω). Consider the extension of u by 0 to Rn \K. Then u ∗ ϕε is
well-defined and its support is a subset of Kε b Ω.

To see that uε ∈ C∞(Ω), we pick a coordinate xi for x ∈ Kε. Consider the following:
uε(x+ ∆x · ei)− uε(x)

∆x
=

∫
Rn
u(y)

ϕε(x+ ∆x · ei − y)− ϕε(x− y)

∆x
dy,

The integration is really on K = suppu, and not the entire Rn, and taking |∆x| < ε, then as
∆x→ 0 we have that

ϕε(x+ ∆x · ei − y)− ϕε(x− y)

∆x
→ ∂ϕε

∂xi
(x− y)

uniformly for all y ∈ K. This partial derivative is uniformly continuous on Kε, and so:

lim
∆x→0

uε(x+ ∆x · ei)− uε(x)

∆x
=

∫
Rn
u(y)

∂ϕε
∂xi

(x− y) dy

This implies ∂uε
∂xi

=
∫
Rn u(y)∂ϕε

∂xi
(x− y) dy.

We can repeat this process by induction, and we obtain that Dαuε = u ∗ Dαϕε for every
multi-index α.

Let us re-examine the definition uε. Denote by z = x−y
ε
, then we have that:

uε(x) = ε−n
∫
Rn
u(y)ϕ(z) dy = ε−n

∫
Rn
u(x− εz)ϕ(z)εn dz =

∫
Rn
u(x− εz)ϕ(z) dz.

But we can restrict our integration to B1(0), and so uε ∈ C∞0 (Ω).
To summarize the intuition, for x ∈ Kε we have that uε(x) is a “rearrangement” of u by the

“weights of ϕ(z) dz”.
Example 131. TakeK b Ω withK +B3ε(0) ⊆ Ω. Now consider u = χK+Bε(0). This function
is indeed in L1

loc(Ω) with compact support. We calculate:

uε(x) =

∫
K+Bε(0)

u(y)ϕε(x− y) dy =

∫
x−y∈Bε(0)

ϕε(x− y) dy = 1.

This example leads us to the following corollary.
Corollary 132. For everyK b Ω there is ψK,ε ∈ C∞0 (Ω) such that ψK,ε(x) = 1 for all x ∈ K,
and generally 0 ≤ ψK,ε(x) ≤ 1.1

Proposition 133. Suppose that u is continuous on Ω (so u ∈ C0(Ω)), then uε(x) → u(x) for
all x ∈ Ω.

Proof. For every x ∈ Ω if ε is small enough, then we have that:

uε(x)− u(ε) =

∫
B1(0)

u(x− εz)ϕ(z) dz − u(x)

=

∫
B1(0)

(u(x− εz)− u(x))ϕ(z) dz

=⇒ |uε(x)− u(x)| ≤
∫
B1(0)

|u(x− εz)− u(x)|ϕ(z) dz < δ

For some δ > 0 small enough, by uniform continuity of u on Ω.
1Such function is sometimes called a cutoff function.
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Corollary 134. C∞0 (Ω) is dense in C0(Ω) in the topology induced by the sup norm.

Note that on C0(Ω) we can induce the topology from the F-space C(Ω) as topologized by
the semi-norms pK for K b Ω. These two topologies are not the same, to see why consider
Ω = (0, 1) and some xj → 1, let ϕj(x) = ϕε(x − xj). In the topology of C(Ω) this sequence
converges to the zero function, as on every compact set we will eventually be 0. But in the sup
norm this is not the case, and the sequence is not convergent at all.

Recall that on C∞0 (Ω) we have a topology inherited from C∞(Ω) where it is defined by the
semi-norms pK,α = maxx∈K |Dαf(x)| for all K b Ω and α ∈ Nn for some n ∈ N.

Proposition 135. C∞0 (Ω) is dense in Lp(Ω) for all 1 ≤ p <∞.

Proof. First note we can take f ∈ Lp(Ω) such that supp f = K b Ω. Then we have that
f ∈ L1(Ω), so we can define fε(x) =

∫
Ω
f(y)ϕε(x − y) d y. Now ‖fε‖p ≤ ‖f‖p so the map

f 7→ fε is a continuous linear operator on Lp(K).
So to prove that limε→0 ‖fε − f‖p = 0 it suffices to prove this for a dense subset of f ’s. So

now we can assume that f ∈ C0(Ω) in which case fε → f uniformly when ε→ 0. So certainly∫
Ω
|fε − f |p → 0.

9.2 Test Functions
Definition 136. Let D(Ω) denote C∞0 (Ω) and we call it the test functions on Ω. If K b Ω we
denote by DK(Ω) the subspace of DΩ of all the test functions whose support is included in K.

On DK(Ω) there is one topology making it into an F-space, inherited from C∞(Ω) and
defined by pK,α as before.

We know that C∞0 (Ω) inherits a topology on C∞(Ω). But this is not the topology we are
interested in. D(Ω) is topologized in the following way: U ⊆ D(Ω) which is convex, absorbing
and balanced and 0 ∈ U is a basic open neighborhood of 0 if U ∩ DK(Ω) for every K b Ω.

It is easy to see that this topology is Hausdorff, if ϕ, ψ ∈ D(Ω), there is some K b Ω such
that suppϕ, suppψ ⊆ K and then in DK(Ω) these two are separated.

9.2.1 Semi-norms
For every K b Ω and a multi-index α, pα,K(u) = maxx∈K |Dαu| is a continuous semi-norm,
trivially. Another example is pmax(u) = maxΩ |u|, and this one is continuous because if
U ε = {u ∈ D(Ω) | |u| < ε} then U ε ∩ DK(Ω) = {u ∈ C∞0 (Ω) | suppu ⊆ K, |u| < ε} for
every K b Ω, and this is by definition open in DK(Ω) so U ε is open in D(Ω).

A third example is when xk → x ∈ ∂Ω, we define p{xk}(u) =
∑

k ck|u(xk)| where ck > 0
is a continuous semi-norm onD(Ω), since when we intersect this withDK(Ω), forK b Ω, only
a finite number of summands will appear.

If f ∈ L1
loc(Ω) we can define pf (u) =

∫
Ω
|f(x)u(x)| dx is a continuous semi-norm. This is

because when u ∈ DK(Ω) then pf (u) ≤ maxK |u(x)|
∫
K
|f(x)| dx, which is a defined number

since f is locally integrable. If µ is a non-negative measure giving compact subsets of Ω finite
measure, then integrating with respect to µ, instead of integrating f · u, gives a continuous
semi-norm by similar considerations.
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Proposition 137. Let {ϕj}∞j=1 ⊆ D(Ω), then ϕj → 0 in D(Ω) if and only if the following
condition holds: There exists K b Ω such that suppϕj ⊆ K for all j, and ϕj → 0 in DK(Ω).

Proof. Suppose the condition holds, then for every U ⊆ D(Ω) basic open set will satisfy
U ∩ DK(Ω) is open, and since ϕj → 0 in DK(Ω) it means that for all but finitely many j,
ϕj ∈ U ∩ DK(Ω). But this means that almost all the ϕj’s are in U .

Conversely assume that ϕj → 0 in D(Ω). Assume towards contradiction that there exists a
subsequence ϕjk and xjk such that xjk → x ∈ ∂Ω (so there is no compact support for all the
ϕj’s), and ϕjk(xjk) 6= ∅. Consider the continuous semi-norm:

p(u) =
∞∑
k=1

|u(xjk)|
|ϕjk(xjk)|

Then p(ϕjk) ≥ 1 which is impossible since we assumed ϕj → 0. So there must be a compact
K as wanted, but now ϕj → 0 in DK(Ω) as wanted.

Remark. We can reformulate the condition from the previous proposition as follows: ϕj → 0 in
D(Ω) if there is someK b Ω such that suppϕj ⊆ K and for every α ∈ Nn, maxK |Dαϕj| → 0.

If in the above remark we require instead that for all K b Ω, maxK |Dαϕj| → 0 (without
requiring that there is a uniform support), does that mean that ϕj → 0 in D(Ω)? Not at all,
because that would mean exactly that ϕj → 0 in C∞(Ω) and we know that this is not the same
as converging to 0 in D(Ω).

9.3 Distributions (or Generalized Functions)
Definition 138. The space of continuous linear functions on D(Ω) will be denoted by D′(Ω)
and its elements are called distributions2. The topology on D′(Ω) is the weak-∗ topology.

For example δx0(ϕ) = ϕ(x0) for x0 ∈ Ω and ϕ ∈ D(Ω). Functionals such as uf (ϕ) =∫
Ω
fϕ dx for f ∈ L1

loc(Ω), or if µ ≥ 0 is a measure giving finite values to compact sets, then
uµ(ϕ) =

∫
Ω
f dµ give us more examples.

Remark. We will use Greek letters such as ϕ, ψ and so on for elements in D(Ω) and Latin
letters such as u, v will denote elements of D′(Ω) and we define the notation: 〈u, ϕ〉 := u(ϕ).3

Theorem 139. Let u be a linear functional on D(Ω), then u ∈ D′(Ω) if and only if u � DK(Ω)
is continuous for all K b Ω.

Proof. Denote by Bε = {z ∈ C | |z| < ε}. Suppose that u ∈ D′(Ω), then for every ε > 0,
Uε = u−1(Bε) is open in D(Ω). By definition this means that for every K b Ω, Uε ∩ DK(Ω)
is open. So u−1(Bε) ∩ DK(Ω) is open for every compactK, which means that u is continuous
on every DK(Ω).

In the other direction, assume that u � DK(Ω) is continuous for every K b Ω, then the
intersection Uε ∩ DK(Ω) = u−1(Bε) ∩ DK(Ω) is open by continuity, and therefore Uε is open
as wanted.

2In some places distributions are called generalized functions
3This is called pairing.
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Corollary 140. u ∈ D′(Ω) if and only if for every K b Ω there are cK > 0 and k ∈ N such
that for every ϕ ∈ DK(Ω), |u(ϕ)| ≤ cK max|α|≤k maxx∈K |Dαϕ(x)|.

Proposition 141. Let u be a linear functional onD(Ω). Then u ∈ D′(Ω) if and only if for every
ϕj → 0 in D(Ω), u(ϕj)→ 0.

Proposition 142. Suppose that there is a sequence {uj} ⊆ D′(Ω) such that for all ϕ ∈ D(Ω)
the sequence uj(ϕ)→ u(ϕ) (so uj converge pointwise to u). Then u ∈ D′(Ω).

Proof. It is clear that u is a linear functional. Now given K b Ω, DK(Ω) is a complete
metric space, so by the uniform boundedness principle, uj → u pointwise on DK(Ω) and u is
continuous on DK(Ω) and by the previous theorem u is continuous as wanted.

Example 143. Take Ω = R and consider u(ϕ) =
∑∞

j=1 e
ee
j

ϕ(j), then ϕ is a distribution.

In slightly better generality, let A : D(Ω)→ X a linear operator into a locally convex space
X .

Proposition 144. A is continuous if and only if A � DK(Ω) is continuous for every K b Ω.

Proof. To verify continuity it is enough to verify that if V ⊆ X is an open neighborhood
of 0, A−1(A) is an open neighborhood of 0 in D(Ω). Namely, A−1(A) ∩ DK(Ω) is an open
neighborhood of 0 for every K b Ω.

The above is true in particular when taking X = D(Ω) itself.

Example 145. Let ψ ∈ C∞(Ω) and define Tψ(ϕ) = ψϕ as a linear operator from D(Ω) to
itself. We claim that Tψ is continuous. So it is enough to check continuity on everyK b Ω. But
given any such K, and every α ∈ Nn:

max
x∈K
|Dα(ψϕ)| ≤ C max

x∈K,|β|≤|α|
|Dβϕ|.

Where we take C = maxx∈K,|β|≤|α| |Dβψ|.

Example 146. For 1 ≤ i ≤ n we define Ti : D(Ω)→ D(Ω) by:

Ti(ϕ) =
∂

∂xi
ϕ.

This is continuous because given some K b Ω we can find C > 0 and k ∈ N such that:

max
x∈K

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣ ≤ C max

|α|≤k
|Dαϕ(x)|.

We can define Tα for every multi-index α ∈ Nn, and by induction every Tα is continuous.

Example 147. We know that the functional defined on D(Ω) by taking xj → x ∈ ∂Ω and
defining:

ϕ 7→
∞∑
j=1

cjD
αjϕ(xj).

Suppose now thatΩ = Rn, and consider the operator: Tϕ(x) =
∑∞

k=0 ϕ(x+ka)where a ∈ Rn

is nonzero. While Tϕ does not have a compact support, it is true that Tϕ ∈ C∞(Rn). So we
can ask whether or not T : D(Rn) → C∞(Rn). And this is left as a riddle to the interested
reader.
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9.4 Operators on Distributions
Proposition 148. Let u ∈ D′(Ω) and ψ ∈ C∞(Ω). Then ψu defined on D(Ω) by:

ψu(ϕ) = u(ψϕ)

is continuous. Namely, ψu ∈ D′(Ω). Similarly, if α ∈ Nn is a multi-index, then Dαu defined
by Dαu(ϕ) = (−1)|α|u(Dαϕ) is also in D′(Ω).

The two operators are actually continuous operators on D′(Ω).

9.4.1 Examples

Consider Ω = R and the function H(x) =

{
0 x < 0

1 x > 0
which is in L1

loc(R). Then TH is

continuous, where TH is defined as follows:

TH(ϕ) =

∫
R
Hϕ dx =

∫ ∞
0

ϕ(x) dx.

Now if we want to differentiate TH , namely
d

dx
TH(ϕ) = −TH

(
dϕ

dx

)
= −

∫ ∞
0

ϕ′(x) dx = −(ϕ(∞)− ϕ(0)) = ϕ(0) = δ0(ϕ).

We differentiate again:
d

dx
δ0(ϕ) = −δ0(ϕ′) = −ϕ′(0).

Remark. The keen eyed reader will notice that (−1)|α| appears in the definition of Dαu, and
while it does not matter for the continuity, it does seem a bit odd. Why is it there?

Suppose that ψ ∈ C∞(R), then the definition for differentiating distributions gives us:

d

dx
Tψ(ϕ) = −Tψ

(
dϕ

dx

)
= −

∫
R
ψ(x)ϕ′(x) dx.

On the other hand, ψ′ ∈ C∞(R) as well, so we can talk about Tψ′ ,

Tψ′(ϕ) =

∫
R
ψ′(x)ϕ(x) dx.

We would like that there will be equality between d
dx
Tψ = Tψ′ . And we get that equality exactly

because of that added sign.4

We remain in the context of Ω = R. Consider now f(x) = x ·H(x) and we calculate:
d

dx
Tf (ϕ) = −

∫
R

Rf(x)ϕ′(x) dx

= −
∫ ∞

0

xϕ′(x) dx

= −([xϕ(x)]∞0 −
∫ ∞

0

ϕ(x) dx

=

∫ ∞
0

ϕ(x) dx = TH(ϕ).

4This follows from integration by parts to calculate the equality.
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Definition 149. IfH, f ∈ L1
loc(Ω) we say thatH is the weak derivative of f when d

dx
Tf = TH .

9.4.2 Applications to Differential Equations
We work in Ω = R2

+ = {〈x, y〉 | x ∈ R, t > 0}. We have a function on the line Φ0(x) and we
are looking for a function Φ(x, t) defined on R2

+ such that Φ(x, 0) = Φ0(x) and Φt + Φx = 0.5
We define lines of the form x(t) = k + t for k ∈ R. Suppose we had Φ and it is at least

C1(Ω). Then we have that:

d

d t
Φ(x(t), t) = Φx

dx

d t
+ Φt = Φx + Φt = 0.

So Φ is constant on each line x(t), so it only depends on the trace k. So we have that:

Φ(x, t) = Φ̃(k) = Φ0(k) = Φ0(x− t).

So we get that Φ(x, t) = Φ0(x − t) is such a solution. To verify that, note that Φx = Φ′0 and
Φt = −Φ′0 so Φt + Φx = 0 and of course that Φ(x, 0) = Φ0(x).6

If, for example, we take Φ0(x) = sin x we will get Φ(x, t) = sin(x − t). But what
happens when we want Φ0(x) = H(x)? We could argue that H is not in C1 so the question is
meaningless. But we did not come here to give excuses, we came here to give solutions!

For the case Φ0(x) = H(x) we still have Φ(x, t) = Φ0(x− t). But now we consider these
as distributions. If Φ(x, t) is a distribution on R2

+ we know how to calculate Φx and Φt as
distributions and we require that Φx + Φt = 0 as distributions. So we have that

∂

∂t
Φ0(x− t) = − d

dy
Φ0(y)|y=x−t ,

∂

∂x
Φ0(x− t) =

d

dy
Φ0(y)|y=x−t.

So we claim that Φ(x, t) = H(x− t) is still a solution. We verify for ϕ ∈ D(R2
+):

Φx(x, t)(ϕ) = −
∫

Ω

Φ(x, t)ϕx(x, t) dx d t

= −
∫ ∞

0

(∫ ∞
t

ϕx(x, t) dx

)
d t

= −
∫ ∞

0

ϕ(t, t) d t

Similarly we compute Φt(x, t)(ϕ) and we have that Φx + Φt = 0 as distributions.

5These are derivatives with respect to the two parameters.
6We also need to verify that the solution is unique, but this is beyond the scope of the course.
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Chapter 10

Tempered Distributions

We begin by setting conventions for this chapter. We only work with functions in C∞(Rn), we
will denote by ∂j the operator ∂

∂xj
and Dj will be the operator 1

i
∂
∂xj

. Similarly, ∂α and Dα will
be used as before where α ∈ Nn is a multi-index.

10.1 The Schwartz Space
Definition 150. The Schwartz space S(Rn) ⊆ C∞(Rn) is the space of rapidly decreasing,
smooth functions f(x) such that for every k, j ∈ N:

pk,j(f) = sup{(1 + |x|)j|Dαf(x)| | x ∈ Rn, |α| ≤ k} <∞,

and the semi-norms pk,j define the topology.

The functions in the Schwartz space are those that can be multiplied by any polynomial, and
be differentiated in any given order, and remain bounded.1

For example C∞0 (Rn) ⊆ S(Rn), and exp(−|x|2) ∈ S(Rn) as well. Moreover, if f ∈ S(Rn)
then for every α, Dαf ∈ S(Rn) and for every polynomial p, pf ∈ S(Rn) as well.

Proposition 151. If r(x) is a polynomial, then f 7→ rf is a continuous operator on S(Rn).

Proof. This is clearly a linear operator, so it is enough to verify continuity at 0. Let pk,j be a
semi-norm, we want to find a semi-norm pk′,j′ such that pk,j(f) < ε =⇒ pk′,j′(rf) < 1. But
we have the following equality:

Dα(rf) =
∑

Cα,βD
βr ·Dα−βf.

Therefore multiplying by r and all its derivatives give us an increase by at most |x|deg r, so we
take j′ = j + deg r. Now,

(1 + |x|)j|Dα(rf)| ≤ C1(1 + |x|)deg r(1 + |x|)j sup{|Dβf(x)| | x ∈ Rn, β ≤ α} = C1pk,j′(f).

Taking supremum over x ∈ Rn gives us that pk,j(rf) ≤ C1pk,j′(f). Taking ε = 1
C1

finishes the
proof.

1This condition actually implies that as x→∞, f(x)→ 0.
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Proposition 152. For every multi-index α, f 7→ Dαf is a continuous operator on S(Rn).

To improve readability (and save this author a lot of typing) we will simply write S for
S(Rn) from here on end.

Proposition 153. Let f, g ∈ S.

1. The pointwise multiplication fg ∈ S.

2. For every h ∈ Rn, f(x+ h) ∈ S.

3. For every 0 6= ε ∈ R, f(εx) ∈ S.

Proposition 154. S is a metric space, and in fact an F-space.

Proof. Note that the convergence in S is uniform convergence on Rn, for every order of
differentiation and for every multiplication by a polynomial. In particular the semi-norms on
C∞(Rn) are continuous on S. So given a Cauchy sequence in S, it has a limit in C∞(Rn), and
this limit is in fact in S.

10.2 Tempered Distributions and Fourier Transforms
Definition 155. The dual space of S(Rn) will be denoted by S ′(Rn), and it is topologized by
the weak-∗ topology. We call the elements of S ′ tempered distributions.

For example δx0 is a tempered distribution. But the following proposition gives us a very
different tempered distribution.

Proposition 156. The functional I defined by I(f) =
∫
Rn f(x) dx is a tempered distribution.

Proof. Note that (1 + |x|)−n−1 is integrable on Rn by transforming to spherical coordinates.
So we can write,

|I(f)| =
∣∣∣∣∫

Rn
(1 + |x|)n+1f(x)(1 + |x|)−n−1 dx

∣∣∣∣ ≤ C sup
x∈Rn

(1 + |x|)n+1|f(x)|.

Definition 157. We define the operator F on S as follows, for every ξ ∈ Rn we define:

(F f)(ξ) = (2π)−n/2
∫
Rn
f(x)e−iξ·x dx,

where ξ · x is the usual dot product. We call F the Fourier transform.

It is clear why F f is well-defined for all ξ ∈ Rn, and so for all f ∈ S. We will simply
denote f̂ for F f .

Proposition 158. The operator F is a continuous linear operator on S.
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Proof. Given 1 ≤ j ≤ n, consider Dj f̂(ξ), we expand the definition to have that:

Dj f̂(ξ) =
1

i
· ∂
∂ξj

f̂(ξ) =
(2π)−n/2

i
· ∂
∂ξj

∫
Rn
f(x)e−iξ·x dx,

We can move the differentiation inside the integration to obtain the following continuation of
the equality,

(2π)−n/2
∫
Rn
f(x)(−xj)e−iξ·x dx = −̂xjf(ξ).

Next we move to calculate D̂jf(ξ):

D̂jf(ξ) = (2π)−n/2
∫
Rn
Djf(x)e−iξ·x dx

= (−i)(2π)−n/2
∫
Rn

∂

∂xj
f(x)e−iξ·x dx

= (−i)(2π)−n/2
∫
Rn
f(x)

(
− ∂

∂xj
e−iξ·x

)
dx

= (−i)(2π)−n/2
∫
Rn
f(x)iξje

−iξ·x dx

= (2π)−n/2ξj

∫
Rn
f(x)e−iξ·x dx = ξj f̂(ξ).

This gives us the following formulas,Dj f̂(ξ) = −̂xjf(ξ) and ξj f̂(ξ) = D̂jf(ξ). We can finish
the proof now. It is clear that F f ∈ S, since f̂(ξ) is differentiable in every order, and therefore,

Dαf̂(ξ) = (−1)|α|
∫
Rn
xαf(x)e−iξ·x dx.

Therefore Dαf̂ ∈ S for every α ∈ Nn and therefore f̂ ∈ C∞(Rn). On the other hand,

ξαf̂(ξ) = D̂αf(ξ) = (2π)−n/2
∫
Rn
Dαf(x)e−iξ·x dx.

Taking supremum over ξ ∈ Rn we get that supξ∈Rn |ξαf̂(ξ)| ≤ C <∞.

Since S ⊆ L1(Rn) we can actually define the Fourier transform for every f ∈ L1(Rn).

Proposition 159. Let f ∈ L1(Rn). Then f̂(ξ) is continuous for ξ ∈ Rn; if xjf(x) ∈ L1(Rn)
for j ∈ {1, . . . , n} then,

∂

∂ξj
f̂(ξ) = (2π)−n/2

∫
Rn
−ixjf(x)e−iξ·x dx

Exists and continuous.

Proof. For h ∈ Rn we have that:

f̂(ξ + h)− f̂(ξ) = (2π)−n/2
∫
Rn
f(x)

(
e−i(ξ+h)·x) − e−iξ·x

)
dx

= (2π)−n/2
∫
Rn
f(x)e−ξ·x

(
e−ix·h − 1

)
dx→ 0
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Where the last convergence is due to bounded convergence theorem as h → 0. For the second
part, we assume for simplicity that n = 1. Now we have that:

f̂(ξ + h)− f̂(ξ)

h
= (2π)−1/2

∫
R
f(x)

ei(ξ+h)x − eiξx

h
dx

= (2π)−1/2

∫
R
f(x)e−iξx

e−ixh − 1

h
dx

Now as h→ 0 the integrand approaches to (−ix)f(x)e−iξx. But for every θ ∈ R we have that
|eiθ − 1| ≤ |θ|. So |eixh − 1| ≤ |x||h| and finally,∣∣∣∣e−ixh − 1

h

∣∣∣∣ ≤ |x|.
So by the bounded convergence theorem C|x||f(x)| is an upper bound for the integrand as
wanted.

10.3 Transform Fourier and Variable Changes
Suppose that f(x) ∈ S and f(x+ h) ∈ S. Then we have that:

̂f(x+ h)(ξ) = (2π)−n/2
∫
Rn
f(x+h)e−iξ·x dx = (2π)−n/2

∫
Rn
f(x)e−iξ·(x−h) dx = e−iξ·hf̂(ξ)

Now if ε > 0 then we similarly calculate that:

f̂(εx)(ξ) = ε−nf̂

(
1

ε
ξ

)
.

Theorem 160 (Fourier inversion theorem). Let f ∈ S such that f̂ ∈ S. then the following
equality holds:

f(x) = (2π)−n/2
∫
Rn
f̂(ξ)eiξ·x dξ.

Proof. Let ψ(ξ) ∈ S and consider the following:∫
Rn
f̂(ξ)ψ(ξ)eiξ·x dξ =

∫
Rn

(
(2π)−n/2

∫
Rn
f(y)e−iξ·y dy

)
ψ(ξ)eiξ·x dξ

= (2π)−n/2
∫
Rn

∫
Rn
f(y)ψ(ξ)e−iξ·(y−x) dξ dy

=

∫
Rn
f(y)ψ̂(y − x) dy

=

∫
Rn
f(x+ y)ψ̂(y) dy

Now for ε > 0 we consider ψ(εξ) instead of ψ(ξ) and we have that:∫
Rn
f̂(ξ)ψ(εξ)eiξ·x dξ =

∫
Rn
ε−nψ̂

(y
ε

)
dy.
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Suppose now that ψ(0) = 1 and ε→ 0, we have in the right hand side,∫
Rn
f(x+ y)ε−nψ̂

(y
ε

)
dy =

∫
Rn
f(x+ εz)ψ̂(z) dz → f(x)

∫
Rn
ψ̂(z) dz.

So the equality turns into ∫
Rn
f̂(ξ)eiξ·x dξ = f(x)

∫
Rn
ψ̂(z) dz.

Now we take ψ(ξ) = e−ξ
2/2 and we calculate ψ̂(y):

ψ̂(y) = (2π)−n/2
∫
Rn
e−ξ

2/2e−iξ·y dξ =
n∏
j=1

(
(2π)−1/2

∫
R
e−ξ

2
j /2e−iξjyj dξj

)
.

So we only need to calculate the single dimensional integral of the Gaussian on R.

(2π)−1/2

∫
R
e−ξ

2/2e−iξy dξ = (2π)−1/2

∫
R
e−(ξ+iy)2/2 dξe−y

2/2

= (2π)−1/2

∫
R
e−ξ

2/2 dξe−y
2/2 = e−y

2/2.

Therefore ê−ξ2/2(y) = e−y
2/2. So going back to the Rn context, we have that the product

becomes 1. So we have the wanted conclusion as wanted.

Corollary 161. The operator F is a bijection.

Proposition 162. Let ϕ, ψ ∈ S. Then:

1.
∫
Rn ϕ̂ψ =

∫
Rn ϕψ̂.

2.
∫
Rn ψ̂ψ̂ =

∫
Rn ϕψ.

Corollary 163. If we take ϕ = ψ, then we get that
∫
Rn |ϕ̂|

2 =
∫
Rn |ϕ|

2. It means that F is an
isometry on S as well as induced from L2(Rn).

Corollary 164. We can extend F to an isometric isomorphism to L2(Rn).

This leads us to the following definition.

Definition 165. If T is an isometric isomorphism on L2 we say that it is a unitary operator.

10.4 The Extension of the Fourier Transform
We will write F for the extension of the Fourier transform to L2, although f̂ is not necessarily
defined on functions in L2.

Proposition 166. Let f ∈ L1(Rn) ∩ L2(Rn). Then F f(ξ) = (2π)−n/2
∫
Rn(x)e−iξ·x dx almost

everywhere when the integral is well-defined.
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This means that we can find a continuous representative for F f if we can calculate the
integral, at least in the case that f ∈ L1(Rn) as well.

Proof. First we deal with the case that supp f b Rn, and without loss of generality supp f b
Br(0) for some r > 0. Then we can find a sequence {ϕj}∞j=1 ⊆ C∞0 (Br(0)) such that ϕj → f
in L2. From Hölder’s inequality it follows that ϕj → f in L1 as well.

Because ϕj → f in L2 it follows that F ϕj → F f , but we know how F ϕj looks like,

F ϕ = (2π)−n/2
∫
Rn
ϕj(x)e−iξ·x dx.

But now, by the convergence in L1 we have that

(2π)−n/2
∫
Rn
ϕj(x)e−iξ·x dx→ (2π)−n/2

∫
Rn
f(x)e−iξ·x dx.

We calculate the approximation to see that:∣∣∣∣∫
Rn

(ϕj(x)− f(x))e−iξ·x dx

∣∣∣∣ ≤ ∫
Rn
|ϕj(x)− f(x)| dx→ 0.

Therefore we have that F f = (2π)−n/2
∫
Rn f(x)e−iξ·x dx almost everywhere, thus the proof is

complete for the case where the integral is defined and f has a compact support.
Now we deal in the general case. Define fk = f ·χ{x||x|≤k}, then fk → f in L2 and therefore

F fk → F f as well (again in L2). By the previous case, we already know that:

F fk = (2π)−n/2
∫
Rn
fk(x)e−iξ·x dx

But we also have that fk → f in L1 and for every ξ ∈ Rn we have that

F f(ξ)→ (2π)−n/2
∫
Rn
f(x)e−iξ·x dx

(and this convergence is uniform in ξ) and the result follows.

Corollary 167. We can extend the Fourier transform to L1(Rn) given by:

f̂(ξ) = (2π)−n/2
∫
Rn
f(x)e−iξ·x dx.

Proposition 168. For every f ∈ L1(Rn):

1. f̂(ξ) is continuous and bounded.

2. (Riemann-Lebesgue Lemma) limR→0 sup|ξ|>R |f̂(ξ)| = 0.

Proof. Let ε > 0 and ϕ ∈ S such that ‖ϕ− f‖1 < ε. Then we have that

|ϕ̂(ξ)− f̂(ξ)| ≤ (2π)−n/2
∫
Rn
|ϕ(x)− f(x)| dx < ε.

On the other hand, ϕ̂ ∈ S, so f̂ is a limit of a uniformly convergent sequence of sequences
which are continuous and bounded, so it is also continuous and bounded.

For the second part, takeϕ like in the previous part, andR� 1 such that sup|ξ|>R |ϕ̂(ξ)| < ε,
then we have that

|f̂(ξ)| ≤ |ϕ̂(ξ)− f̂(ξ)|+ |ϕ̂(ξ)| < 2ε.
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We have already proved the Riemann-Lebesgue Lemma in the context of weak topologies.
We have seen that for f ∈ L2(S1) it holds that

∫
S1 f(x)e−inx dx → 0 when n→ 0. This is of

course true for f ∈ L1 as well, by approximations.

Proposition 169. Let f ∈ L2(Rn) and define f̂k(ξ) = (2π)−n/2
∫
|x|≤k f(x)e−iξ·x d x. Then in

L2 we have that f̂k(ξ) = F f(ξ) in L2.

Proof. We know that fk → f in L2, so F fk → F f in L2 as well. On the other hand, we know
that

F fk(ξ) = (2π)−n/2
∫
Rn
fk(x)e−iξ·x dx.

Definition 170. In the above situation, where f ∈ L2 we sometimes write that:

F f(ξ) = l.i.m.(2π)−n/2
∫
Rn
f(x)e−iξ·x dx

where the l.i.m. is an acronym for “limit in mean”.

Recall the inversion theorem. We saw that for f ∈ S it holds by the inversion theorem
that f(−x) = (2π)−n/2

∫
Rn f̂(ξ)e−iξ·x d x. So if we define Rg(x) = g(−x), then F2 = R so

F4 = R2 = I .

Corollary 171. By a unitary continuation we get that F2 = R on L2(Rn).

10.5 Extending the Inversion Theorem
Theorem 172. Let f ∈ L1(Rn) such that f̂ ∈ L1(Rn). Then the inversion theorem hold for f .
Namely,

f(x) = (2π)−n/2
∫
Rn
f̂(ξ)eiξ·x dξ.

Proof. First note that
∫
f̂ g =

∫
fĝ when f, g ∈ L1, since for g ∈ L1 we have ĝ ∈ L∞ and so

on, now by Fubini’s theorem the equality follows.
Now define f0(x) = (2π)−n/2

∫
Rn f̂(ξ)eiξ·x d ξ. Take ϕ ∈ S and consider the following

equation:

Rnf0(x)ϕ̂(x) dx = (2π)−n/2
∫
Rn

(∫
Rn
f̂(ξ)eiξ·x dξ

)
ϕ̂(x) dx

=

∫
Rn
f̂(ξ)

(
(2π)−n/2

∫
Rn
ϕ̂(x)eiξ·x dx

)
dξ

=

∫
Rn
f̂(ξ)ϕ(ξ) dξ =

∫
Rn
f(x)ϕ̂(x) dx.

Now we use the fact that
∫
Rn(f0(x) − f(x))ϕ̂(x) d x = 0 for every ϕ ∈ S. And therefore

f0(x) = f(x) almost everywhere.

What we have shown, in conclusion, is that whenever the formulas are well-defined we can
use the formulas even when f is not in S.
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10.6 Fourier Transform and Convolutions
Proposition 173. If f, g ∈ L1(Rn), then f̂ ∗ g(ξ) = (2π)n/2f̂(ξ)ĝ(ξ).

Proof. Recall that f ∗ g(x) =
∫
Rn f(y)g(x− y) dy. Therefore we have that

f̂ ∗ g(ξ) = (2π)−n/2
∫
Rn

(∫
Rn
f(y)g(x− y) dy

)
e−iξ·x dx

= (2π)−n/2
∫
Rn

(∫
Rn
g(x− y)eiξ·(x−y) dx

)
f(y)eiξ·y dy

= (2π)−n/2
∫
Rn

(2π)n/2ĝ(ξ)f(y)e−iξ·y dy = (2π)−n/2(2π)nf̂(ξ)ĝ(ξ).

Corollary 174. Let X = F(L1(Rn))), the image of the Fourier transform on L1. Then
X ⊆ C(Rn), and its elements rapidly decreasing, and X is closed under multiplication.

For example when n = 1, take ϕα(ξ) = (1 + |ξ|)−α for α > 0. If α > 1
2
then ϕα ∈ L2(R)

so for some gα ∈ L2(R) we have that ĝα = ϕα. And if α > 1 we can also write it as
ϕα(ξ) = ϕα/2(ξ)ϕα/2(ξ) so it is the pointwise product of two functions in L2.

10.7 Tempered Distributions Strike Back!
Recall that S ′(Rn) is the dual space of S(Rn). We observe that S ′(Rn) ⊆ D′(Rn), namely
every continuous linear functional on S(Rn) will be continuous when restricted to D(Rn). On
the other hand, D′(Rn) is much larger. If f ∈ L1

loc(Rn) then ϕ 7→
∫
Rn fϕ is continuous on

D(Rn); on the other hand, this functional need not be extendable to S(Rn).
Recall that Tf (ϕ) =

∫
Rn fϕ is a linear functional if the integral is always defined for ϕ ∈ S.

Remark. 1. For Tf to be defined it is sufficient that f has a polynomial growth, namely
|f(x)| ≤ C(1 + |x|)k for some constants C, k.

2. If ϕ ∈ S and ψ ∈ C∞(Rn) then ψϕ ∈ S and Dαψ has polynomial growth.

Definition 175. For every T ∈ S ′(Rn) and every multi-index α we define

DαT (ϕ) = T
(
(−1)|α|Dαϕ

)
.

For every ψ ∈ C∞(Rn) that has polynomial growth (as do its derivatives), and ϕ ∈ S, T ∈ S ′
we define

ψT (ϕ) = T (ψϕ).

Note that as Dα : S → S is a continuous operator, DαT ∈ S ′(Rn) as well. Similarly as
ϕ 7→ ψϕ is continuous, ψT ∈ S ′ as well.

What else can we find in S ′(Rn)? Every u ∈ D′(Rn) which has compact support, for
example Dαδx0 or other Borel measures with compact support.
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10.8 Fourier Transform of Tempered Distributions
Suppose that T ∈ S ′(Rn) and ϕ ∈ S. We define T̂ (ϕ) = T (ϕ̂). So we have that T̂ ∈ S ′ and if
f is suitable (e.g. f ∈ L1), then T̂f = Tf̂ .

Example 176. We calculate δ̂x0:

δ̂x0(ϕ) = δx0(ϕ̂)

= (2π)−n/2
∫
Rn
ϕ(ξ)e−iξ·x0 dξ

= (2π)−n/2Te−iξ·x0 (ϕ)

So we can write2 that δ̂x0 = (2π)−n/2e−iξ·x0 .

It follows from the above example that for x0 = 0, δ̂0 = (2π)−n/2T1.

Proposition 177. D̂jT = ξjT̂ .

Proof.

D̂jT (ϕ) = DjT (ϕ̂)

= −T (Djϕ̂(x))

= −T
(
Dj

(
(2π)−n/2

∫
Rn
ϕ(ξ)e−iξ·x dξ

))
= −T

(
1

i
(2π)−n/2

∫
Rn
ϕ(ξ)(−iξj)e−iξ·x dξ

)
= T

(
(2π)−n/2

∫
Rn
ϕ(ξ)ξje

−iξ·x dξ

)
= T (x̂jϕ) = T̂ (ξjϕ) = ξjT̂ (ϕ).

The above generalizes to D̂αT = ξαT̂ .

Proposition 178. Suppose that f ∈ C1(Rn) and f, ∂f
∂xj

have polynomial growth, then

∂

∂xj
Tf = T ∂

∂xj
f .

10.9 Heat Equations
Suppose that u(x, t) satisfies that for t ≥ 0, ∂tu = ∂2

xu with initial condition u(x, 0) = u0(x) ∈
S(R). For every t ≥ 0 we consider the Fourier transform of u(x, t) with respect to x. Namely,

û(ξ, t) = (2π)−1/2

∫
R
u(x, t)e−iξx dx.

2This is a sloppy notation which is mathematically incorrect, but scientifically concise.
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We differentiate with respect to t to obtain:

∂

∂t
û(ξ, t) = (2π)−1/2

∫
R

∂

∂t
u(x, t)e−iξx dx

= (2π)−1/2

∫
R

∂2

∂x2
u(x, t)e−iξx dx

= ̂frac∂2∂x2u(x, t)(ξ, t) = −ξ2û(ξ, t).

Therefore we have a differential equation ∂
∂t
û(ξ, t) = −ξ2û(ξ, t) with an initial condition

û(ξ, 0) = û0(ξ) ∈ S(R). The unique solution is û(ξ, t) = e−tξ
2
û0(ξ).

Now suppose that G(x, t) ∈ S(R) for t > 0 such that Ĝ(ξ, t) = e−tξ
2 . Then we have

̂G(·, t) ∗ u0(·) = (2π)−1/2Ĝ(ξ, t)û0(ξ) = (2π)−1/2e−tξ
2

û0(ξ) = (2π)−1/2û(ξ, t).

In conclusion u(x, t) = (2π)−1/2G(·, t) ∗ u0(·) or in other words,

u(x, t) = (2π)−1/2

∫
R
G(x− y, t)u0(y) dy.

10.10 Final Remarks on Tempered Distributions and the
Fourier Transform

The Fourier transform F can be extended to an isometric isomorphism of L2(Rn) such that
whenever the following integrals are defined equality holds,∫

Rn
| F f(ξ)|2 dξ =

∫
Rn
|f(x)|2 dx. (Parseval’s identity)

Moreover, we have seen that
∫
Rn ϕψ =

∫
Rn ϕψ, at least when ϕ, ψ ∈ S(Rn). If we have

f, g ∈ L2(Rn) we can find sequences {ϕk}∞k=1 and {ψk}∞k=1 such that in L2(Rn), ϕk → f and
ψk → ψ. Then we have that F $f → F f and F ψk → F g. And by the identity we know that∫
Rn ϕkψk =

∫
Rn ϕ̂kψ̂k. Combining all these we obtain that for every f, g ∈ L2 it holds that,∫

Rn
F f(ξ)F g(ξ) dξ =

∫
Rn
f(x)g(x) dx. (Plancherel’s theorem)

While F : S(Rn)→ S(Rn) and F : L2(Rn)→ L2(Rn) were continuous, we also extended
F to S ′(Rn) by the formula T̂ (ϕ) = T (ϕ̂), and this extension is also continuous when we
consider S ′(Rn) with the weak-∗ topology.

Recall the heat equation ut = uxx and u(x, 0) = u0(x) ∈ S(R). We saw that ∂tû(ξ, t) =

−ξ2û(ξ, t). So we got that û(ξ, t) = e−tξ
2
û0(ξ). Suppose now that e−tξ2 = Ĝ(x, t)(ξ), then

̂G(x, t) ∗ u0(x) = (2π)−1/2e−tξ
2
û0(ξ). Or in other words, ̂1√

2π
G ∗ u0 = û(ξ, t). We also saw

that in that case u(x, t) = (2π)−1/2
∫
RG(x− y, t)u0(y) dy.
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Since e−tξ2 ∈ S(R), for t > 0 we get that G(x, t) ∈ S(R). So we have that,

G(x, t) = (2π)−1/2

∫
R
e−tξ

2

e−iξx dξ

= (2π)−1/2

∫
R
e−

1
2
y2e
−i y√

2t
x 1√

2t
dy

=
1√
2t
e−

1
2
x2

2t .

Therefore we get that,

u(x, t) =
1√
4πt

∫
R
G(x− y, t)

√
2tu0(y) dy =

1√
4πt

∫
R
e−
|x−y|2

4t u0(y) dy.

So if we have that u0(y) ∈ S(R), then û0(ξ) ∈ S(R) also. In particular, as t→ 0, e−tξ2û0(ξ)→
û0(x0) in S(R).

In conclusion, if u0 ∈ S, then 1√
4πt

∫
R e
− |x−y|

2

4t u0(y) d y → u0(x) in S, as t → 0. Ad-
ditionally, e−tξ2 → T1 in S ′(R) (recall that

∫
R e
−tξ2ϕ(ξ) d ξ →

∫
R ϕ(ξ) d ξ). So we get that

ê−tξ2 → T̂1, or in other words G(x, t)→ T̂1 in S ′(R). Recall that

T̂1(ϕ) = T1(ϕ̂) =

∫
ϕ̂(ξ) dξ = (2π)1/2ϕ(0),

so T̂1 = (2π)1/2δ0. In other words, G(x, t) → (2π)1/2 in S ′(R). In particular {G(x, t)}t>0 is
an approximation for δ0.
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Chapter 11

Compact Operators on Banach Spaces

Suppose thatX is a Banach space, recall that B(X) is the space of all bounded linear operators
T : X → X . We agree that the norms will not bear subscript, since we only work in X and it
will be clear when something is an operator norm or a norm in X . We will use T to denote an
operator in B(X) without mentioning it often.

Proposition 179. If T ∈ B(X) such that T (X) = X and kerT = {0} (so T is a bijection),
then T−1 ∈ B(X) as well.

11.1 The Spectrum of an Operator
Definition 180. Let λ ∈ C such that T − λI : X → X is a bijective operator (so there is
(T − λI)−1 ∈ B(X)). The set {λ ∈ C | (T − λI)−1 ∈ B(X)} is called the resolvent set of T .

Proposition 181. Suppose that λ ∈ C and |λ| > ‖T‖, then λ is in the resolvent set of T .

Proof. Note that T − λI) = λ(λ−1T − I), and now ‖λ−1T‖ < 1. By Neumann’s series there
is an inverse operator, (λ−1T − I)−1.

Definition 182. The spectrum of T is the complement, in C, of the resolvent set. We denote
the specturm by σ(T ).

From the previous proposition we know that λ ∈ σ(T ) implies that |λ| ≤ ‖T‖. So it is a
bounded set.

Example 183. Suppose that X = C[0, 1]. Consider T defined by (Tf)(x) = xf(x). We know
that

‖Tf‖ ≤ 1 · ‖f‖ = max{|f(x)| | x ∈ [0, 1]} =⇒ ‖T‖ ≤ 1.

Let λ ∈ C and we try to solve the equation (T − λI)f = g. Namely xf(x) − λf(x) = g(x).
If λ /∈ [0, 1] we have that f(x) = g(x)

x−λ which is a continuous function. So σ(T ) ⊆ [0, 1]. What
happens if λ0 ∈ [0, 1]?

So for x ∈ [0, 1] we have (x− λ0)f(x) = g(x), and therefore g(λ0) = 0. So we cannot take
any g to be the inverse. It follows, if so, that σ(T ) = [0, 1].

We saw that T − λ0I is not surjective, but is it injective? Suppose that f0 ∈ ker(T − λ0I).
Therefore for every x ∈ [0, 1] satisfies xf0(x) = λ0f0(x) so f(x) = 0 for all x 6= λ0 and by
continuity f = 0 everywhere. So T − λI is indeed injective.

58



Definition 184. We say that λ ∈ σ(T ) is an eigenvalue of T such that for some h 6= 0 we have
that Th = λh.

The example above shows that we can have T which has a nontrivial spectrum, but only 0
is an eigenvalue of T .

11.2 Compact Operators
Definition 185. We say that T ∈ B(X) is a compact operator1 if for every bounded sequence
{xn}∞n=1 there is a convergent subsequence of {Txn}∞n=1.

Proposition 186. T is a compact operator if and only if T (B) is compact, where B is the unit
ball.2

Proof. Take {zn}∞n=1 ⊆ T (B), then for every n there is some yn ∈ B such that ‖Tyn−zn‖ < 1
n
,

so there is some subsequence Tyn′ which is convergent, and it is clear that zn′ is convergent.
The other direction is trivial.

Proposition 187. The requirement that T ∈ B(X) is unnecessary. Namely, every compact
operator is bounded.

Proof. Suppose that T is not bounded and take {xn}∞n=1 on the unit sphere such that ‖Txn‖ →
∞. So there is no convergent subsequence of {Txn}∞n=1 and therefore T is not compact.

We will denote by K(X) the subspace of B(X) of the compact operators on X .

Proposition 188. K(X) is a closed subspace of B(X).

Proof. Let {Tn}∞n=1 ⊆ K(X) a convergent sequence in B(X) with T its limit there. For every
ε > 0 there is some N ∈ N such that ‖Tn − T‖ < ε for all n > N .

Let {xk}∞k=1 ⊆ X a bounded sequence. By diagonalization there is a subsequence xk′ such
that limk′→∞ Tjxk′ exists for all j. We will now show that Txk′ is convergent. Fix ε > 0 andN
as in the definition, and let n > N .

|Txk′ − Txl′‖ ≤ ‖(T − Tn)xk′‖+ ‖Tn(xk′ − xl′)‖+ ‖(T − Tn)xl′‖

≤ 2ε

3
sup
k′
‖xk′‖+ ‖Tn(xk′ − xl′)‖

And this goes to 0 as wanted, so the sequence converges.

Proposition 189. K(X) is a two-sided ideal. Namely, if T ∈ K(X) and S ∈ B(X) then
ST, TS ∈ K(X).

Example 190. ConsiderC[0, 1] again and look at Tf(x) =
∫ x

0
f(s) ds. We know that for all x,

|Tf(x)| ≤ ‖f‖ so ‖T‖ ≤ 1. Suppose that λ 6= 0, is it an eigenvalue? Suppose that Tf = λf ,
then for every x

λf(x) =

∫ x

0

f(s) ds =⇒ λf ′(x) = f(x), f(0) = 0.

1Also called completely continuous
2This is the common definition.
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And we know there is no such f other than f(x) = 0.
Is λ 6= 0 in the spectrum of T? We need to check if T − λI is surjective. Suppose

h ∈ C[0, 1], we ask if there is some f such that
∫ x

0
f(s) d s − λf(x) = h(x)? By solving

the differential equation, the existence and uniqueness of the solution guarantee that indeed
λ /∈ σ(T ). Therefore σ(T ) = {0}.

Finally, is T compact? Suppose that {fn}∞n=1 is a sequence in the closed unit ball ofC[0, 1],
then ‖Tfn‖ ≤ 1 as well. But we even have that,

|Tfn(x2)− Tfn(x1)| =
∣∣∣∣∫ x2

x1

fn(s) ds

∣∣∣∣ ≤ |x2 − x1|.

Therefore the sequence {Tfn}∞n=1 is equiconsistent and by the Arzela-Ascoli theorem it has a
convergent subsequence.

Proposition 191. If T ∈ K(X) and λ 6= 0, then the image of T − λI is closed in X .

Proof. Suppose that {xn}∞n=1 is a sequence and (T − λI)xn → y, then we need to show that
there is some x such that Tx = y.

We can assume that y 6= 0, since (T − λI)0 = 0 by linearity. If {xn} is bounded, then
there is a convergent subsequence Txn′ , therefore Txn′ − λxn′ → y implies that λxn′ → λx is
convergent. But this means that (T − λI)xn′ → (T − λI)x which means Tx = y as wanted.

It remains to show the claim when ‖xn‖ → ∞ (if there was a bounded subsequence, then
by passing to it we reduce to the previous case). let E = ker(T − λI), then xn /∈ E for all but
finitely many n ∈ N as in that case y = 0 and we assumed this is not the case. Let Fn be the
space spanned by E ∪ {xn}, then there is zn ∈ Fn which is almost orthogonal to E, namely
d(zn, E) ≥ 1

2
and ‖zn‖ = 1. We can write zn = anxn + un where an ∈ C and un ∈ E.

We observe that {an}∞n=1 has no subsequence converging to 0. Otherwise an′ → 0 and we
have that (T−λI)zn′ = an′(T−λI)xn′ → (lim an′)y = 0. But now {zn′} is a bounded sequence
so there is a subsequence {zn′′} such that zn′′ → z and therefore (T−λI)zn′′ → (T−λI)zwhich
implies that Tz = 0 and so z ∈ E, which is a contradiction since d(zn′′ , E)→ d(z, E) > 0.

And so we have that,
(T − λI)

zn
an

= (T − λI)xn → y.

Moreover |an| ≥ c > 0 for some c, and therefore 1
an

is bounded so { zn
an
} is bounded and we

reduced to the first part of the proof.

Proposition 192. Let T ∈ K(X) then the following three statements cannot occur simultane-
ously:

1. There is {xn | n ∈ N} which is linearly independent.

2. There is λn → λ 6= 0.

3. Txn = λnxn.

Namely, there is no sequence of linearly independent eigenvectors whose eigenvalues do not
converge to 0.
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Proof. Assume towards contradiction that the three statements happen. For every n ∈ N
let Fn = span{x1, . . . , xn}, then Fn $ Fn+1. Then there is some yn+1 ∈ Fn+1 such that
‖yn+1‖ = 1 and d(yn+1, Fn) ≥ 1

2
.

Note that T (Fn) ⊆ Fn, so if we takem > n we get the follow equality:

Tym − Tyn = Tym − λmym − Tyn + λmym.

And Tym − λmym − Tyn ∈ Fn ⊆ Fm−1, so for large enoughm we get

‖Tym − Tyn‖ ≥ d(λmym, Fm−1) = |λm|d(ym, Fm−1 ≥
|λ
2

1

2
.

But T is compact, so {Tyn} has a convergent subsequence which is a contradiction as the
above shows that {Tyn} is discrete.

Corollary 193. Suppose that λ 6= 0 is an eigenvalue of T , then it has finite dimensional
eigenspace.

11.3 The Spectral Theorem
Theorem 194. Let T ∈ K(X), then σ(T ) \ {0} is a sequence {λn}∞n=1 of eigenvalues and
limn→∞ λn = 0.

Proof. Suppose λ 6= 0 is not an eigenvalue, then ker(T −λI) = {0}, so if T −λI is surjective,
λ /∈ σ(T ).

Let Fn be the range of (T − λI)n for n ∈ N. Then Fn+1 ⊆ Fn, and we claim that each Fn
is closed. To see that, note that (T − λI)n =

∑
cβT

β + (−λ)nI , but the sum is compact so
by a previous claim Fn is closed. Assume towards contradiction that Fn+1 $ Fn for all n, find
xn ∈ Fn such that ‖xn‖ = 1 and d(xn, Fn+1) ≥ 1

2
. Takem > n and we have that

Txm − Txn = Txm − λxn − (Txn − λxn) = Txm − (Txn − λxn)− λxn.

As in the previous proof, Txm − (Txn − λxn) ∈ Fn+1, so

‖Txm − Txn‖ ≥ |λ|d(xn, Fn+1) ≥ 1

2
|λ|.

But by the compactness of T we obtain a contradiction, as {Txn | n ∈ N} is discrete.
Therefore the sequence of Fn’s has to stabilize. There is some n for which Fn = Fn+1. Now

we claim that actually Fn−1 = Fn as well. Suppose that x ∈ Fn−1 then there is y ∈ X such that
x = (T − λI)n−1y. Therefore,

(T − λI)x = (T − λI)ny = (T − λI)n+1z.

But λ is not an eigenvalue, then x = (T − λI)nz ∈ Fn. Therefore Fn−1 = Fn, so it has to be
the case that Fn = X for all n ∈ N and T − λI is surjective as wanted.

We have proved, if so, that every λ ∈ σ(T ) is an eigenvalue. We will prove that for every
n ∈ N there are at most finitely many λ ∈ σ(T ) such that |λ| ≥ 1

n
. But this follows easily from

the last proposition, since between 1
n
and ‖T‖ there can be at most finitely many |λ|’s.

Corollary 195 (Fredholm alternative). Let T ∈ K(X) and λ 6= 0. If λ is not an eigenvalue
there is a unique solution for every y to the equation (T − λI)x = y.
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