## Blog posts from 2016

## Mathematical philosophy on YouTube!

Dec 23 2016, 10:07

If you follow my blog, you probably know that I am a big fan of Michael Stevens from the VSauce channel, who in the recent year or so released several very good videos about mathematics, and about infinity in particular. Not being a trained mathematician, Michael is doing an incredible task.

Non-mathematicians often tend to be Platonists "by default", so they will assume that every question has an answer and sometimes it's just that we don't know that answer. But it's out there. It's a fine approach, but it can somewhat fly in the face of independence if you are not trained to think about the difference between true and provable. Continue reading...

## Some thoughts about teaching advanced set theory

Nov 14 2016, 00:14

I've been given the chance to teach the course in axiomatic set theory in Jerusalem this semester. Today I gave my first lecture as a teacher. It went fine, I even covered more than I expected to, which is good, I guess. I am also preparing lecture notes, which I will probably post here when the semester ends. These predicated on some rudimentary understanding in logic and basic set theory, so there might be holes there to people unfamiliar with the basic course (at least the one that I gave with Azriel Levy for the past three years).

Yesterday, however, I spent most of my day thinking about how we---as a collective of set theorists---teach axiomatic set theory. About that usual course: axioms, ordinals, induction, well-founded sets, reflection, \(V=L\) and the consistency of \(\GCH\) and \(\AC\), some basic combinatorics (clubs, Fodor's lemma, maybe Solovay or even Silver's theorem). Up to some rudimentary permutation. Continue reading...

## Zornian Functional Analysis or: How I Learned to Stop Worrying and Love the Axiom of Choice

Oct 10 2016, 19:34

Back in the fall semester of 2015-2016 I had taken a course in functional analysis. One of the reasons I wanted to take that course (other than needing the credits to finish my Ph.D.) is that I was always curious about the functional analytic results related to the axiom of choice, and my functional analysis wasn't strong enough to sift through these papers.

I was very happy when the professor, Matania Ben-Artzi, allowed me to write a final paper about the usage of the axiom of choice in the course, instead of taking an exam. Continue reading...

## In praise of some history

Jul 10 2016, 01:19

Teaching pure mathematics is not a trivial thing. You have to overcome the several barriers that were constructed by the K12 education that mathematics is a bunch of "fit this problem into that mold".

I recently had a chat with James Cummings about teaching. He said something that I knew long before, that being a good teacher requires a bit of theatricality. My best teacher from undergrad, Uri Onn, had told me when I started teaching, that being a good teacher is the same as being a good storyteller: you need to be able and mesmerize your audience and keep them on the edge of their seats, wanting more. Continue reading...

## Constructive proof that large cardinals are consistent

Jul 06 2016, 13:30

I am not a Platonist, as I keep pointing out. Existence, even not in mathematics, is relative and confusing to begin with, so I don't pretend to try and understand it in a meaningful way.

However, we have a proof, a constructive proof that large cardinals are consistent. And they exist in an inner model of our universe. Continue reading...

## Some thoughts about "automated theorem searching"

Jun 27 2016, 01:02

Let me begin by giving a spoiler warning. If you haven't watched "The Prisoner" you might be spoiled about one of the episodes. Not that matters, for a show from nearly 40 years ago, but you **should** definitely watch it. It is a wonderful show. And even if you haven't watched it, it's just one episode, not the whole show. So you can keep on reading.

So, I'm fashionably late to the party (with some good excuse, see my previous post), but after the recent 200 terabytes proof for the coloring of Pythagorean triples, the same old questions are raised about whether or not at some point computers will be better than us in finding new theorems, and proving them too. Continue reading...

## Iterating Symmetric Extensions

Jun 22 2016, 07:43

I don't usually like to write about new papers. I mean, it's a paper, you can read it, you can email me and ask about it if you'd like. It's there. And indeed, for my previous papers, I didn't even mention them being posted on arXiv/submitted/accepted/published. This paper is a bit different; but don't worry, this is not your typical "new paper" post.

If you don't follow arXiv very closely, I have posted a paper titled "Iterating Symmetric Extensions". This is going to be the first part of my dissertation. The paper is concerned with developing a general framework for iterating symmetric extensions, which oddly enough, is something that we didn't really know how to do until now. There is a refinement of the general framework to something I call "productive iterations" which impose some additional requirements, but allow greater freedom in the choice of filters used to interpret the names. There is an example of a class-length iteration, which effectively takes everything that was done in the paper and uses it to produce a class-length iteration—and thus a class length sequence of models—where slowly, but surely, Kinna-Wagner Principles fail more and more. This means that we are forcing "diagonally" away from the ordinals. So the models produced there will not be defined by their set of ordinals, and sets of sets of ordinals, and so on. Continue reading...

## Syntactic T-Rex: Irregularized

Jun 20 2016, 20:39

One of my huge pet peeves is with people who think that writing \(1+2+3+\ldots=-\frac1{12}\) is a reasonable thing without context. Convention dictates that when no context is set, we interpret infinite summation as the usual convergence of a series, namely the limit of the partial sums, if it exists (and of course that \(1+2+3+\ldots\) does not converge to any real number). However, a lot of people who are [probably] not mathematicians per se, insist that just because you *can* set up a context in which the above equality holds, e.g., Ramanujan summation or zeta regularization, then it is automatically perfectly fine to write this out of nowhere without context and being treated as wrong.

But those people forget that \(0=1\) is also very true in the ring with a single element; or you know, just in any structure for a language including the two constant symbols \(0\) and \(1\), where both constants are interpreted to be the same object. And hey, who even said that \(0\) and \(1\) have to denote constants? Why not ternary relations, or some other thing? Continue reading...

## MM70: YouTube links!

Jun 14 2016, 15:46

During the first day of the conference we realized that it might be a good idea to get the lectured videoed, so we quickly set up the videos for the second and third day. With the exception of one speaker who asked not to be videoed, you can find all the lectures from the second and third day of the conference in this YouTube Playlist.

Enjoy! Continue reading...

## Quick update from Norwich

Jun 11 2016, 04:03

It's been a while, quite a while, since I last posted anything. Even a blurb.

I'm visiting David Asperó in Norwich at the moment, and on Sunday, the 12th, I will return home. It seems that the pattern is that you work most of the day, then head for a few drinks and dinner. Mathematics is eligible for the first two beers, philosophy of mathematics for the next two, and mathematical education for the fifth beer. Then it's probably a good idea to stop. Also it is usually last call, so you kinda have to stop. Continue reading...

## Vsauce on cardinals and ordinals

Apr 09 2016, 21:11

To the readers of my blog, it should come as no surprise that I have a lot of appreciation to what Michael Stevens is doing in Vsauce. In the past Michael, who is not a mathematician, created an excellent video about the Banach-Tarski paradox, as well another one on supertasks. And now he tackled infinite cardinals and ordinals.

You can find the video here: Continue reading...

## What I realized recently

Mar 30 2016, 18:04

I recently learned that diamonds are cut and polished with the dust of other diamonds. And I recently realized that success is cut and polished with the dust of failures.

In particular a successful mathematical idea is polished with the dust of the many failed ideas that preceded it. Continue reading...

## The Five WH's of Set Theory

Jan 23 2016, 11:11

I was asked to write a short introduction to set theory for the European Set Theory Society website. I attempted to give a short answer to what is set theory, why study it, when and how to study it and where to find resources.

You can find the article on the ESTS' website "Resources" page, or in the Papers section of my website. Continue reading...