Asaf Karagila
I don't have much choice...

Posts tagged paradoxes

Cofinality and the axiom of choice

What is cofinality of a[n infinite] cardinal? If we think about the cardinals as ordinals, as we should in the case the axiom of choice holds, then the cofinality of a cardinal is just the smallest cardinality of an unbounded set. It can be thought of as the least ordinal from which there is an unbounded function into our cardinal. Or it could be thought as the smallest cardinality of a partition whose parts are all "small".

Not assuming the axiom of choice the definition of cofinality remains the same, if we restrict ourselves to ordinals and \(\aleph\) numbers. But why should we? There is a rich world out there, new colors that were not on the choice-y rainbow from before. So anything which is inherently based on the ordering properties of the ordinals should not be considered as the definition of an ordinal. So first let's recall the two ways we can order cardinals without choice. Continue reading...

Name that number

In the best TV show ever produced, Patrick McGoohan plays the mysterious No. Six. He lives in The Village, where former spies are held. The people there are essentially captive, and they all have numbers instead of names. But he is not a number! He is a free man!

We find a similar concept in Zelda's poem "Every man has a name" (לכל איש יש שם), which in Israel is closely associated with the Holocaust and with assigning numbers to people. But alas, we are all numbers in some database. Our ID numbers, employer number, the index under which you appear in the database. You are your phone number, and your bank account number. You are the aggregation of all these numbers. And more. Continue reading...

Anti-anti Banach-Tarski arguments

Many people, more often than not these are people from analysis or worse (read: physicists, which in general are not bad, but I am bothered when they think they have a say in how theoretical mathematics should be done), pseudo-mathematical, non-mathematical, philosophical communities, and from time to time actual mathematicians, would say ridiculous things like "We need to omit the axiom of choice, and keep only Dependent Choice, since the axiom of choice is a source for constant bookkeeping in the form of non-measurable sets".

People often like to cite the paradoxical decomposition of the unit sphere given by Banach-Tarski. "Yes, it doesn't make any sense, therefore the axiom of choice needs to be omitted". Continue reading...