Asaf Karagila
I don't have much choice...

Blog posts from 2018

Preserving Properness

I just posted another problem in the problems page. The prize, by the way, is a bottle of port wine, or equivalent. And I truly hope to make good on that prize.

In another problem there, coming from a work with David Asperó, we asked if an \(\omega_2\)-closed forcing must preserve the property of being proper. Yasou Yoshinobu provided us with a negative answer based on Shelah's "Proper and Improper Forcing" XVII Observation 2.12 (p.826). Take \(\kappa\) to be uncountable, by forcing with \(\Add(\omega,1)\ast\Col(\omega_1,2^\kappa)\) and appealing to the gap lemma, \((2^{<\kappa})\) is a tree with only \(\aleph_1\) branches. It can therefore be specialized by a ccc forcing in that model. The iteration of these three forcing (Cohen real, collapse, specialize) is clearly proper. But now by forcing with \(\Add(\kappa,1)\) we must in fact violate the properness of this forcing, which was defined in the ground model, since the new branch is also generic for the tree and will therefore collapse \(\omega_1\).

Continue reading...

Pickles!

Those who know me, also know my strong liking of the amazing Spreewaldhof Get One! pickles (go, get one!). I got one as a present from a friend who visited Germany, and after that, I started obsessing over them. I found them in Vienna on my first visit (with the help of Jakob Kellner), and they became the standard Viennese gift from visitors to Jerusalem for me. Mozart chocolate balls for the rest, a bunch of pickles for me. Thanks, Viennese people!

So naturally I could not skip on this video.

Continue reading...

Cohen's Oddity

We all know and love Cohen's first model where the axiom of choice fails. It is the O.G. symmetric extension. But Cohen didn't invent the idea on his own, he used Fraenkel's ideas from his work on set theory with atoms and permutation models. The two results, however, are significantly different.

Fraenkel's construction does not affect sets of ordinals, in particular the real numbers can still be well-ordered in his models. Cohen's work, however, directly breaks that. The Dedekind-finite set added is a set of reals. In particular, the reals cannot be well-ordered no more.

Continue reading...

Five Star Theorems

Talks. Giving talks. We usually don't give talks about past research. Talks are meant to present recent research, things you've just finished, that you're finishing right now, that you've found out!

So often times, it seems, it is very tempting to talk about theorems that you haven't finished writing their proofs in full. Usaully, we put "work in progress" to indicate that this is something not fully verified, not fully vetted (at the very least by ourselves).

Continue reading...

Definable Models Without Choice

Suppose that a parameter formula defines an inner model. Does that inner model satisfy choice?

Well, obviously, if choice failed then the answer is no, just by taking \(x=x\). But what if we remove that option. Namely, if the inner model is not the entire universe, then choice holds.

Continue reading...

Critical Cardinals

Yup. I posted a new paper on arXiv. And if you're one of my three regular readers, you know that I am not going to talk about the paper itself (I leave that to the paper), but rather about the process leading to it. If you don't care, that's fine, the paper is on arXiv and you can check the Papers section of the site to see if it's been published or whatnot.

So, this one has been on the back burner for a while. And it actually started as two separate projects that merged and separated and merged again.

Continue reading...

Open Problems!

I've decided to have a list of open problems on my site. I am no Erdős, nor Hilbert, nor Knuth.

But I want my own problems page, and it's my site. So to celebreate the new website, I created just that. For the first couple of problems, I've chosen to focus on the axiom of choice. And I don't think that I have much choice, but to keep that interest running. But I can promise that this is not the only type of problems that I will add there.

Continue reading...

New website!

Welcome to my new website!

It is a static website, because I am tired of the WordPress format for a long long time now. So for the occasion, I also got a new domain, karagila.org. Isn't this nice? The only domain and all the links should work, at least for the foreseeable future. So there's nothing to worry about linkrot for now. But please do update your links!

Continue reading...

In praise of failure

I had a recent back and forth on Math.SE with a user that asked whether or not some exercise he found in some textbook is correct. The OP asked not to provide a proof, but rather to confirm if this statement is at all provable. When I asked why not just try and prove the damn thing, the reply was that if there is a typo or a mistake and the statement is in fact not provable, then they would have wasted their time trying an impossible task.

Well. Actually no. When I was a dewy eyed freshman, I had taken all my classes with 300 students from computer science and software engineering (Ben-Gurion University has changed that since then). Our discrete mathematics professor was someone who was renowned as somewhat careless when it comes to details in questions and stuff like this (my older brother took calculus with the same professor about ten years before, one day he didn't show up to class, when my brother and two others went to see if he is at his office, he was surprised to find out that today is Tuesday).

Continue reading...